23 research outputs found

    Improving the Performance of PCA-Based Chiller Sensor Fault Detection by Sensitivity Analysis for the Training Data Set

    Get PDF
    An improved approach of fault detection for chiller sensors is presented based on the sensitivity analysis for the original data set used to train the Principal Component Analysis (PCA) model. Sensor faults are inevitable due to the aging, environment, location and so on. Meanwhile, because of the wide range of operational conditions, the fault of a certain sensor is very difficult to be directly detected by its own historical data. PCA is a multivariate data-based statistical analysis method and it is very useful for the sensor fault detection in HVAC&R. The undetectable zone of a certain sensor by Q-statistic is derived from the definition of Q-statistic which is usually employed as a boundary to detect the sensor fault situation. Due to the similar style between Q-statistic and Hawkins’ TH2, the undetectable zone by Hawkins’ TH2 is also obtained. Undetectable zone is a predictive index to indicate the detectability of different sensors by different statistics. Since undetectable zone is the character of the original training data set, it can indicate the quality for the selected training data. One field data set is employed to validate the presented approach. Results show that the undetectable zone of a certain sensor by Q-statistic is quite different from that by Hawkins’ TH2. Therefore, the undetectable zone can be used to improving the performance of PCA-based chiller sensor fault detection by choosing different fault detection statistics with less undetectable zone for different sensor

    Novel and Extendable Genotyping System For Human Respiratory Syncytial Virus Based On Whole-Genome Sequence analysis

    Get PDF
    BACKGROUND: Human respiratory syncytial virus (RSV) is one of the leading causes of respiratory infections, especially in infants and young children. Previous RSV sequencing studies have primarily focused on partial sequencing of G gene (200-300 nucleotides) for genotype characterization or diagnostics. However, the genotype assignment with G gene has not recapitulated the phylogenetic signal of other genes, and there is no consensus on RSV genotype definition. METHODS: We conducted maximum likelihood phylogenetic analysis with 10 RSV individual genes and whole-genome sequence (WGS) that are published in GenBank. RSV genotypes were determined by using phylogenetic analysis and pair-wise node distances. RESULTS: In this study, we first statistically examined the phylogenetic incongruence, rate variation for each RSV gene sequence and WGS. We then proposed a new RSV genotyping system based on a comparative analysis of WGS and the temporal distribution of strains. We also provide an RSV classification tool to perform RSV genotype assignment and a publicly accessible up-to-date instance of Nextstrain where the phylogenetic relationship of all genotypes can be explored. CONCLUSIONS: This revised RSV genotyping system will provide important information for disease surveillance, epidemiology, and vaccine development

    Assessment of the influence of using green tea waste and fish waste as soil amendments for biosolarization on the growth of lettuce (Lactuca sativa L. var. ramosa Hort.)

    Get PDF
    IntroductionSafe and efficient treatment of organic waste is crucial to developing a sustainable food system around the world. Soil biosolarization (SBS) is a soil treatment technique that can use organic solid wastes to treat the soil in a way that is alternative to the use of chemical fumigants to improve soil fertility in agriculture.MethodsIn this study, two types of organic food wastes, green tea waste (GTW) and fish waste (FW), were evaluated for the feasibility of being applied as soil amendments within simulations of high-temperature cycle SBS. The evaluation was conducted by execution of three groups of measurements: gas and organic volatile emission profile, residual soil phytotoxicity and weed suppression, and cultivar growth (Lactuca sativa L. var. ramosa Hort.).Results and DiscussionGreen tea waste contributed to elevated levels of soil respiration and the evolution of signature volatile organic compounds during the simulated SBS. In the soil amended with green tea waste and then undergoing SBS the phyto compatibility was restored after residual phytotoxicity dissipation and a complete weed suppression was achieved. By using an application rate of 2.5% (w/w, mass fraction of green tea waste in total soil-waste mixture) green tea waste cultivar growth comparable to that of the non-treated soil (NTS) group was attained, with a more efficient nitrogen utilization and higher residual soil nitrogen content enabling the improvement of the continuous cropping system. FW at 1% (w/w, mass fraction of FW in total soil-waste mixture) promoted cultivar growth despite the significant reduction of the nitrogen (p value=0.02) and phosphorus (p value=0.03) contents in the cultivar leaves. A significant increase of the sodium content together with an increase of iron and chromium, which exceeded the permissible limit, were observed. These results provide new information about amendment selection for the SBS process

    VirBR, a transcription regulator, promotes IncX3 plasmid transmission, and persistence of bla NDM-5 in zoonotic bacteria

    Get PDF
    IncX3 plasmids carrying the New Delhi metallo-β-lactamase-encoding gene, blaNDM-5, are rapidly spreading globally in both humans and animals. Given that carbapenems are listed on the WHO AWaRe watch group and are prohibited for use in animals, the drivers for the successful dissemination of Carbapenem-Resistant Enterobacterales (CRE) carrying blaNDM-5-IncX3 plasmids still remain unknown. We observe that E. coli carrying blaNDM-5-IncX3 can persist in chicken intestines either under the administration of amoxicillin, one of the largest veterinary β-lactams used in livestock, or without any antibiotic pressure. We therefore characterise the blaNDM-5-IncX3 plasmid and identify a transcription regulator, VirBR, that binds to the promoter of the regulator gene actX enhancing the transcription of Type IV secretion systems (T4SS); thereby, promoting conjugation of IncX3 plasmids, increasing pili adhesion capacity and enhancing the colonisation of blaNDM-5-IncX3 transconjugants in animal digestive tracts. Our mechanistic and in-vivo studies identify VirBR as a major factor in the successful spread of blaNDM-5-IncX3 across one-health AMR sectors. Furthermore, VirBR enhances the plasmid conjugation and T4SS expression by the presence of copper and zinc ions, thereby having profound ramifications on the use of universal animal feeds

    Sequence terminus dependent PCR for site-specific mutation and modification

    Full text link
    This dataset provides all the data associated with the development of a biotechnology assay on detecting nucleic acid modifications using a PCR workflow

    Ursolic acid reduces oxidative stress injury to ameliorate experimental autoimmune myocarditis by activating Nrf2/HO-1 signaling pathway

    Get PDF
    Background: Oxidative stress is crucial in experimental autoimmune myocarditis (EAM)-induced inflammatory myocardial injury. Ursolic acid (UA) is an antioxidant-enriched traditional Chinese medicine formula. The present study aimed to investigate whether UA could alleviate inflammatory cardiac injury and determine the underlying mechanisms.Methods: Six-week-old male BALB/c mice were randomly assigned to one of the three groups: Sham, EAM group, or UA intervention group (UA group) by gavage for 2 weeks. An EAM model was developed by subcutaneous injection of α-myosin heavy chain derived polypeptide (α-MyHC peptide) into lymph nodes on days 0 and 7. Echocardiography was used to assess cardiac function on day 21. The inflammation level in the myocardial tissue of each group was compared using hematoxylin and eosin staining (HE) of heart sections and Interleukin-6 (IL-6) immunohistochemical staining. Masson staining revealed the degree of cardiac fibrosis. Furthermore, Dihydroethidium staining, Western blot, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used to determine the mechanism of cardioprotective effects of UA on EAM-induced cardiac injury, and the level of IL-6, Nrf2, and HO-1.Results: In EAM mice, UA intervention significantly reduced the degree of inflammatory infiltration and myocardial fibrosis while improving cardiac function. Mechanistically, UA reduced myocardial injury by inhibiting oxidative stress (as demonstrated by a decrease of superoxide and normalization of pro- and antioxidant enzyme levels). Interestingly, UA intervention upregulated the expression of antioxidant factors such as Nrf2 and HO-1. In vitro experiments, specific Nrf2 inhibitors reversed the antioxidant and antiapoptotic effects of ursolic acid, which further suggested that the amelioration of EAM by UA was in a Nrf2/HO-1 pathway-dependent manner.Conclusion: These findings indicate that UA is a cardioprotective traditional Chinese medicine formula that reduces EAM-induced cardiac injury by up-regulating Nrf2/HO-1 expression and suppressing oxidative stress, making it a promising therapeutic strategy for the treatment of EAM

    A method for extracting soil microplastics through circulation of sodium bromide solutions

    No full text
    Microplastics (MP) have been recently found in soil environments. These MP might have adverse effects at high concentrations and thus efficient extraction and analysis of MP from soil is needed. Here we propose a new method of NaBr solution circulation for extracting soil MP. A device for the circular extraction of soil MP was developed. This device included a separation, vacuum filtration, and solution recovery system. It was then utilized to test separation efficiency of soil MP with three economic and environmentally friendly extraction reagents: NaCl, CaCl2 and NaBr solutions. The separation was tested with ten different types of polymers, three different size classes and three different shapes of MP. Extraction with NaBr showed the highest recovery rates ranging from 85% to 100%. After extraction the samples were treated with H2O2 and analyzed by micro-Fourier transform infrared spectroscopy. The developed method was assessed for its potential influence on MP and no significant changes in the integrity of multiple MP were found. Finally, the established method was used to analyze MP in four types of soil: farmland, yellow-brown, paddy and floodplain soil from the suburb of Shanghai. Results showed that the mean abundance of MP was 136.6–256.7 item kg−1. Various MP including PP (40%), PE (35.5%), Acrylic (15.6%), PET (6.7%) and PA (2.2%) were found. With this paper, we provide an alternative method through NaBr solution circulation for the extraction of soil MP

    Sequence terminus dependent PCR for site-specific mutation and modification detection

    Get PDF
    The detection of changes in nucleic acid sequences at specific sites remains a critical challenge in epigenetics, diagnostics and therapeutics. To date, such assays often require extensive time, expertise and infrastructure for their implementation, limiting their application in clinical settings. Here we demonstrate a generalizable method, named Specific Terminal Mediated Polymerase Chain Reaction (STEM-PCR) for the detection of DNA modifications at specific sites, in a similar way as DNA sequencing techniques, but using simple and widely accessible PCR-based workflows. We apply the technique to both for site-specific methylation and co-methylation analysis, importantly using a bisulfite-free process - so providing an ease of sample processing coupled with a sensitivity 20-fold better than current gold-standard techniques. To demonstrate the clinical applicability through the detection of single base mutations with high sensitivity and no-cross reaction with the wild-type background, we show the bisulfite-free detection of SEPTIN9 and SFRP2 gene methylation in patients (as key biomarkers in the prognosis and diagnosis of tumours)

    Association of baseline, longitudinal serum high-sensitive C-reactive protein and its change with mortality in peritoneal dialysis patients

    No full text
    Abstract Background The prognostic values of baseline, longitudinal high-sensitivity C-reactive protein (hs-CRP) and its change over time on mortality in patients undergoing continuous ambulatory peritoneal dialysis (CAPD) remain uncertain. Methods We retrospectively studied 1228 consecutive CAPD patients from 2007 to 2012, and followed up through December 2014. Cox regression models were performed to assess the association of hs-CRP on outcomes using serum hs-CRP levels as: (1) stratified by tertile of baseline or longitudinal hs-CRP levels; (2) baseline or longitudinal hs-CRP levels as continuous variables; and (3) categorized by tertile of slopes of hs-CRP change per year for each subject. Results Higher baseline hs-CRP levels were not associated with clinical outcomes after adjustment for potential confounders. However, patients with the upper tertile of longitudinal hs-CRP had a nearly twice-fold increased risk of both all-cause and cardiovascular mortality [adjusted hazard ratio (HR) 1.77; (95% CI 1.16–2.70) and 2.08 (1.17–3.71), respectively], as compared with those with lower tertile. Results were similar when baseline or longitudinal hs-CRP was assessed as continuous variable. Additionally, the risk of all-cause and cardiovascular mortality in patients with increased trend in serum hs-CRP levels over time (tertile 3) was significantly higher [adjusted HR 2.48 (1.58–3.87) and 1.99 (1.11–3.56), respectively] when compared to those with relatively stable hs-CRP levels during follow-up period. These associations persisted after excluding subjects with less than 1-year follow up. Conclusions Higher longitudinal serum hs-CRP levels and its elevated trend over time, but not baseline levels were predictive of worse prognosis among CAPD patients

    Host EPAC1 Modulates Rickettsial Adhesion to Vascular Endothelial Cells via Regulation of ANXA2 Y23 Phosphorylation

    No full text
    Introduction: Intracellular cAMP receptor exchange proteins directly activated by cAMP 1 (EPAC1) regulate obligate intracellular parasitic bacterium rickettsial adherence to and invasion into vascular endothelial cells (ECs). However, underlying precise mechanism(s) remain unclear. The aim of the study is to dissect the functional role of the EPAC1-ANXA2 signaling pathway during initial adhesion of rickettsiae to EC surfaces. Methods: In the present study, an established system that is anatomically based and quantifies bacterial adhesion to ECs in vivo was combined with novel fluidic force microscopy (FluidFM) to dissect the functional role of the EPAC1-ANXA2 signaling pathway in rickettsiae–EC adhesion. Results: The deletion of the EPAC1 gene impedes rickettsial binding to endothelium in vivo. Rickettsial OmpB shows a host EPAC1-dependent binding strength on the surface of a living brain microvascular EC (BMEC). Furthermore, ectopic expression of phosphodefective and phosphomimic mutants replacing tyrosine (Y) 23 of ANXA2 in ANXA2-knock out BMECs results in different binding force to reOmpB in response to the activation of EPAC1. Conclusions: EPAC1 modulates rickettsial adhesion, in association with Y23 phosphorylation of the binding receptor ANXA2. Underlying mechanism(s) should be further explored to delineate the accurate role of cAMP-EPAC system during rickettsial infection
    corecore