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ABSTRACT 
 

An improved approach of fault detection for chiller sensors is presented based on the sensitivity analysis for the 

original data set used to train the Principal Component Analysis (PCA) model. Sensor faults are inevitable due to the 

aging, environment, location and so on. Meanwhile, because of the wide range of operational conditions, the fault of 

a certain sensor is very difficult to be directly detected by its own historical data. PCA is a multivariate data-based 

statistical analysis method and it is very useful for the sensor fault detection in HVAC&R. The undetectable zone of 

a certain sensor by Q-statistic is derived from the definition of Q-statistic which is usually employed as a boundary 

to detect the sensor fault situation. Due to the similar style between Q-statistic and Hawkins’ 2

HT , the undetectable 

zone by Hawkins’ 2

HT  is also obtained. Undetectable zone is a predictive index to indicate the detectability of 

different sensors by different statistics. Since undetectable zone is the character of the original training data set, it 

can indicate the quality for the selected training data. One field data set is employed to validate the presented 

approach. Results show that the undetectable zone of a certain sensor by Q-statistic is quite different from that by 

Hawkins’ 2

HT . Therefore, the undetectable zone can be used to improving the performance of PCA-based chiller 

sensor fault detection by choosing different fault detection statistics with less undetectable zone for different sensor. 

 

1. INTRODUCTION 
 

Due to long term operation and severely working environment, sensor faults are inevitable in HVAC&R. There are 

much disadvantage because of sensor fault, including ineffective control, unsafe operation, unreasonable energy 

consumption and so on (Lee and Yik, 2010; Yoon et al., 2011). For energy saving and conservation, researches on 

sensor fault detection, diagnosis and erroneous sensor data reconstruction (FDDR) for HVAC&R system have been 

paid more attention to in the last decade. 

 

Usually, the model-based methods and the data-driven methods are the two typical classes of FDDR methods. Any 

faulty sensor cannot be easily identified just only from the historical data of its own. Thus, various multi-

dimensional data-based methods have been introduced to the FDDR of HVAC&R system in the recent years, such 

as fuzzy inference systems(Kocyigit, 2015), data fusion(Sun et al., 2010), neural network(Du et al., 2014; Lee et al., 

2004), support vector machine(Han et al., 2011), principal component analysis(Li et al., 2016), fisher discriminant 

analysis(Du et al., 2007), Bayesian network(Zhao et al., 2015), etc. 

 

Recent years, principal component analysis (PCA) (Härdle and Simar, 2007; Jackson, 1991), a multivariate 

statistical analysis method, was presented in the sensor FDDR, including the whole system(Wang et al., 2010), 

AHU(Li and Wen, 2014; Xiao et al., 2009), VAV(Du et al., 2009), chiller(Chen and Lan, 2009; Hu et al., 2016; Xu 

et al., 2008) and so on. By the different assignment of sensors or the combination with other algorithms, PCA-based 

approaches were successfully applied into sensor FDDR for chiller.  

 

Many researchers were dedicated in applying novel data-driven methods into the sensor FDDR of HVAC&R system. 

For any data-driven method, the analysis results highly depend on the character of the training data set. Because the 

fielded data relies on sampling interval, sampling location, measurement principles, and so on, the quality of training 

data is much worse. However, rare work was reported on how to predict the quality of the training data so as to 

enhance the FDDR results in detail. In this paper, the undetectable zone for each sensor assigned in PCA model is 
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presented to evaluate the detectability for chiller sensor fault. It is derived from the training data and the definition 

of statistics employed as fault detection boundary. The undetectable zone for each sensor can be used to evaluate the 

fault detection ability and reliability with clear physical or thermodynamic meanings. A fielded data set of a real 

screw chiller was employed to validate the detectability of different statistics in detail. 

 

2. PCA-BASED SENSOR FDDR 

 
2.1 PCA-based sensor FDDR 

In PCA method, the original data matrix 
0 m nX R   usually consists of m samples (rows) and n process variables 

(columns) obtained from the field measurements. The training data 0 m nX  , which is consisted of the original 

measured data, is transferred to a normalized matrix  1 , ,
T

T T

mX x x
 with zero mean and unit variance due to 

engineering units and orders of magnitude. After the eigenvalue decomposition of the covariance matrix, 

( 1)TR X X n  , any normalized samples x  can be expressed as 

 

 ˆx x x   (1) 

 

where x̂ , the estimation of x , is the projection vector of x  onto the PC subspace, and x , the residual of x , is the 

projection vectors of x  onto the Residual subspace. 

 

A common FDDR strategy for sensor fault based on PCA is illustrated as Figure 1. Its detailed structure can be 

referred in reference (Hu et al., 2012). It needs to emphasize that the original operational data used to train PCA 

model is included with many outliers inevitably due to measurement errors, hardware failure and so on. The aim of 

PCA modeling is to establish a fault boundary to detect whether there is a faulty sensor in system or not. 

 

 
 

Figure 1: A common FDDR strategy for sensor fault based on PCA 

 

Several statistics can be employed as the boundary to detect sensor fault, such as Q, Hawkins’ 
2

HT  and so on. When 

the value of statistics for the tested sample is greater than the boundary, the fault can be detected successfully. 

Therefore, the below equations mean the sensor fault cannot be detected. 

 

 Q Q  (2) 

 

 
2 2

;H n kT    (3) 

 

Where, Qα is the threshold of Q statistic and 2

;n k  
 is the threshold of Hawkins’ 

2

HT . 

 

2.2 Undetectable Zone by Q-statistic 

If there is a faulty sensor, the measurement data of this sensor make the value of some statistic is greater than the 

threshold. Assuming the certain faulty sensor is the ith sensor, there must be a pair of limited upside and downside 

of ith sensor measurement data, which can just satisfy the Equation (1) or Equation (2). When the measurement data 

of the ith sensor is outside the pair of limitations, the fault can be detected. From the threshold and the other sensors 
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measurement data, we derived the calculation of the limitations for the ith sensor not to be detected. Obviously, the 

pair of limitations is a predictive zone to demonstrate the fault detectability for the ith sensor. 

 

Assuming the jth sensor is the faulty one, xj, the jth entry of x , is the erroneous measurement value. ei, the ith entry 

of x , can be rewritten as 

 

 
1

,:

1 1

j n
RS RS RS RS RS

i ij j ik k ik k ij j i j

k k j

e y x y x y x y x Y x


  

        
(4) 

 

Where, 
RS

ijy  is the jth entry of the ith row of 
RSY . Y

RS
 is the projection matrix of RS. j  is used to indicate the 

direction of the erroneous senor and be written as 

 

 

1, ,1, , 1

1 0

0

0 1

j

j j nj 

 
 
  
 
  
 

 

(5) 

 

Therefore, Q-statistic can be derived as  

 

 
2 2 2

,: ,:

1 1 1

( ) ( 2 ( )) ( )
n n n

RS RS RS RS

ij j ij i j j i j

i i i

Q y x y Y x x Y x
  

 
     
 
  

 
(6) 

 

Due to the jth sensor is faulty one, its Q-statistic will satisfy the following equation (7) 

 

 
2 2 2

,: ,:

1 1 1

( ) ( 2 ( )) ( ) 0
n n n

RS RS RS RS

ij j ij i j j i j

i i i

y x y Y x x Y x Q
  

 
      

 
  

 
(7) 

 

From the style of Equation, it’s a one-variable quadratic inequalities with the form of 
2 >0ax bx c  . Where,  

 

 

2

1

,:

1

2

,:

1

( )

2 ( )

( ) -

n
RS

ij

i

n
RS RS

ij i j

i

n
RS

i j

i

a y

b y Y x

c Y x Q









 

 
  
 







，

，

 

(8) 

 

The pair of solutions of Equation (7), xj,min and xj,max, are the limitations for the normalized sensor fault boundary. A 

zone, 0 0

,min ,max[ , ]j jx x , can be obtained by de-normalizing. If the original measured data 0

jx  is outside of 0 0

,min ,max[ , ]j jx x , we 

can easily find the faulty sensor. Therefore, the area, 0 0

,min ,max[ , ]j jx x , can be defined as the undetectable zone of the ith 

sensor by Q-statistic. The undetectable zone can be employed as the index to evaluate the sensor fault detectability. 

 

2.3 Undetectable Zone by 2

HT  

Similar with the definition of Q-statistic, the Hawkins’ 2

HT  can be rewritten as 

 

 
2 T2H 2 2 T2H T2H T2H 2

,: ,:

1 1 1

( ) ( 2 ( )) ( )
n n n

H ij j ij i j j i j

i i i

T y x y Y x x Y x
  

 
     
 
    (9) 

 

Where, 2 1/2

1,

T H T

k mY P

   is the projection matrix of Hawkins’ 2

HT . Therefore, the undetectable zone of the ith sensor by 

Hawkins’ 2

HT  can be the solutions with the style of 
2 >0ax bx c  , where 
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T2H 2

1

T2H T2H

,:

1

T2H 2 2

,: ;

1

( )

2 ( )

( ) -

n

ij

i

n

ij i j

i

n

i j n k

i

a y

b y Y x

c Y x 











 

 
  
 







 

(10) 

 

The undetectable zone by Hawkins’ 2

HT  is quite different to that by Q-statistic. Therefore, the compared results can 

indicate the different sensitivity for these two different statistics. 

 

2.4 PCA model for a water-cooled chiller 
From the consideration of the energy balance principle, there are eight important sensors in the water-cooled chiller 

and its control logic. The PCA model of a typical water-cooled chiller is 

 

 
i o i o

chw chw chw cw cw cwX T T M T T M W V     (11) 

 

Where, i

chwT  and o

chwT  are the temperature sensors of inlet node and outlet node of evaporator, respectively. i

cwT  and 

o

cwT  are the condenser-water system inlet node temperature and outlet node temperature, respectively. Mchw is the 

water flowrate of chilled-water system and Mcw is the water flowrate of condenser-water system, respectively. W is 

the electrical power. V is the position of the slide valve to indicate the mass flowrate of the refrigerant into the screw 

compressor.  

 

3. VALIDATION 
 

3.1 Cases study 
A fielded data (Hu et al., 2012; Hu et al., 2016) of a water-cooled screw chiller were used to validate the sensitivity 

of Q and Hawkins’ 2

HT  for different sensors. The undetectable zones of different sensors by a same training data set 

were investigated. The results of sensor fault detection were used to validate the predictive ability of undetectable 

zone for the faulty sensor. 

 

CASE I:  i

chwT  with -1.5℃ bias fault 

 

Undetectable zone of i

chwT  for the training data set is illustrated in the Figure 2.  

 

 

Figure 2: Undetectable zone of 
i

chwT  for the training data set 
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The up limits of undetectable zone by Q is almost equal to that by Hawkins’ 2

HT , as well as the down limits of 

two statistics. Obviously, the fault detectability of i

chwT  by Q is equal to the ability by Hawkins’ 2

HT . The 

undetectable zone of  i

chwT by Q is ±1.39 ℃, while that by Hawkins’ 2

HT  is ±0.67℃.There are just the former 20 

samples shown in the horizontal axis in order to make the figure clear. 

 

A bias fault with -1.5℃ was introduced into i

chwT  to test the predictive ability. The fault detection results by Q and 2

HT  

are illustrated in Figure 3 (a) and (b). All the Q-statistics values of tested samples are greater than the Qα and the 

detection efficiency of sensor fault by Q is 100 %. Meanwhile, the -1.5℃ bias fault of i

chwT  is completely detected 

by Hawkins’ 2

HT . Therefore, the detectability indicated by the undetectable zone of i

chwT  is according to the fault 

detection results of tested samples of i

chwT . The undetectable zone successfully predicted the fault detection results.  

 

 
(a)                                                                            (b) 

Figure 3: Fault detection for 
i

chwT  with -1.5℃ bias fault: (a) by Q (b) by 
2

HT  

 

CASE II: o

cwT  with -2.0℃ bias fault 

 

Undetectable zone of o

cwT  for the training data set is illustrated in the Figure 4.  

 

 

Figure 4: Undetectable zone of 
o

cwT  for the training data set 
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Unlike to the results of i

chwT , the up and down limits of undetectable zone by Q is quite different to that by 

Hawkins’ 2

HT . The undetectable zone by Q is much greater than that by Hawkins’ 2

HT . The undetectable zone of 

i

chwT by Q is over ±6.0 ℃, while that by Hawkins’ 2

HT  is less than ±1℃. Consequently, the detectability of o

cwT  fault 

by Hawkins’ 2

HT  is much better than the ability by Q. 

 

The fault detection results by Q and 2

HT  are illustrated in Figure 5 and Figure 6, respectively, when a 2.0℃ bias fault 

was introduced into o

cwT . There are only 21% of Q-statistics values in the tested samples are greater than the Qα. It 

means that the fault detection by Q did not working. Meanwhile, the 2.0℃ bias fault of o

cwT  is completely detected 

by Hawkins’ 2

HT . Due the introduced fault level, 2.0℃, is less than the undetectable zone by Q, ±6.0 ℃, the 

detectability by Q is completely worse than that by Hawkins’ 2

HT . Therefore, it is better that the Hawkins’ 2

HT  is 

employed to detect the o

cwT  fault. 

 

 

Figure 5: Fault detection for 
o

cwT  with 2.0℃ bias fault by Q 

 

 

Figure 6: Fault detection for 
o

cwT  with 2.0℃ bias fault by 
2

HT  
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CASE III: Mcw with +10% bias fault 

 

The predictive results, undetectable zone, of Mcw for the training data set is illustrated in the Figure 7. Meanwhile the 

fault detection results of Mcw by Q and 2

HT  are illustrated in Figure 8. The undetectable zone by Q is nearly equal to 

that by Hawkins’ 2

HT , so the fault detection results of Mcw by Q are in accordance with that by 2

HT .  

 

 
Figure 7: Undetectable zone of Mcw for the training data set 

 

 
(a)                                                                              (b) 

Figure 8: Fault detection for Mcw with +10% bias fault: (a) by Q and (b) by 
2

HT  

 

3.2 Summary 
The undetectable zones for all sensors in the PCA model by Q and by 2

HT  are summarized in the Table 1. The 

detection abilities for different sensor by Q and by 2

HT
 are quite different. At the step for choosing the optimal 

statistics to obtain the fault boundary, the undetectable zone can directly predict the detection ability for the sensor 

by a certain statistics, such as Q or 2

HT . Therefore, the performance of PCA-based sensor Fault detection can be 

improved by choosing the statistics with higher fault detection efficiency by the sensitivity analysis for the certain 

training data set.  
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Table 1: Summary for all sensors’ Undetectable zones by Q and by 2

HT  

 

Sensor Unit Undetectable zone by Q Undetectable zone by 2

HT  

o

chwT  ℃ 
2.78 

(±1.39) 

1.74 

(±0.67) 

i

chwT  ℃ 
2.47 

(±1.24) 

1.68 

(±0.84) 

Mchw l/min 
6.28 

(±3.14) 

6.35 

(±3.18) 

o

cwT  ℃ 
11.77 

(±5.89) 

1.66 

(±0.84) 

i

cwT  ℃ 
12.77 

(±6.39) 

1.61 

(±0.81) 

Mcw l/min 
7.18 

(±3.59) 

5.30 

(±2.65) 

W kW 
137.84 

(±68.92) 

68.07 

(±34.04) 

Mref % 
41.49 

(±20.75) 

20.33 

(±10.17) 

 

There is an important point illustrated by the case study and the summary. The solution of undetectable zone is 

derived from the matrix calculation process of different statistics. The results of undetectable zone only rely on the 

original training data. Therefore, the undetectable zone demonstrates the original feature of the training data.  

 

4. CONCLUSIONS 
Sensor fault detection, diagnosis and erroneous data reconstruction is the fundamental work for the thermodynamic 

fault isolation, the optimal control, the safety operation and so on. In this paper, an evaluation index, undetectable 

zone, is presented to predict the detectability of sensor fault so as to improve the performance of sensor fault 

detection. Different calculation algorithm is derived to obtain the undetectable zone by different statistics.  

 

Undetectable zone can be employed as an index to predict and to evaluate the detectability of sensor fault by some 

statistics for a certain training data set. It can be used to choose the optimal statistics of fault detection for each 

sensor. From the evaluation of detectability for each sensor by different statistics, the online sensor fault detection 

can be more flexible by choosing the most sensitive statistics. Therefore, the detection efficiency can be promoted 

by the prediction of undetectable zone. 

 

NOMENCLATURE 
 

The nomenclature should be located at the end of the text using the following format:   

T temperature (℃) 

M water flow rate (l/min) 

W chiller electrical-power input (kW) 

V position of the slide valve (-) 

X original matrix (-) 

X
0  normalized original matrix (-) 

R  covariance matrix (-) 

U eigen vector matrix (-) 

VE variance explained (-) 

CV  cumulative contribution of variance (-) 

FDD fault detection and diagnosis (-) 

FDDR fault detection, diagnosis and reconstruction (-) 

HVAC&R heating, ventilating, air-conditioning and refrigeration (-) 
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PC Principal Component (-) 

PCA Principal Component Analysis (-) 

SPCA Principal Component Analysis with a statistical data-cleaning (-) 

P   PC subspace projection matrix (-) 

P  Residual subspace projection matrix (-) 

Qα  threshold of the Q-statistic (-) 

x  a sample (-) 

x̂  estimate of a sample (-) 

x  residual of a sample (-) 

rcx  reconstruction of a sample (-) 

xj the jth entry of x  (-) 

ei the ith entry of e  (-) 

 

Greek letters 

μ mean  

σ standard deviation 

λ1, ··· , λn  eigenvalues  

 

Superscript 

i inlet node 

o outlet node 

 

Subscript   

chw chilled-water system 

cw condenser-water system 
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