25,054 research outputs found

    Event-by-event hydrodynamics for heavy-ion collisions

    Full text link
    We compare v2/{\epsilon}2 and v3/{\epsilon}3 from single-shot and event-by-event (2+1)-dimensional hydrodynamic calculations and discuss the validity of using single-shot calculations as substitutes for event-by-event calculations. Further we present a proof- of-concept calculation demonstrating that v2 and v3 together can be used to strongly reduce initial condition ambiguities.Comment: 3 pages, 2 figures. Contribution to the proceedings for 19th Particles & Nuclei International Conference (PANIC11

    Single transverse-spin asymmetry in Drell-Yan lepton angular distribution

    Get PDF
    We calculate a single transverse-spin asymmetry for the Drell-Yan lepton-pair's angular distribution in perturbative QCD. At leading order in the strong coupling constant, the asymmetry is expressed in terms of a twist-3 quark-gluon correlation function T_F^{(V)}(x_1,x_2). In our calculation, the same result was obtained in both light-cone and covariant gauge in QCD, while keeping explicit electromagnetic current conservation for the virtual photon that decays into the lepton pair. We also present a numerical estimate of the asymmetry and compare the result to an existing other prediction.Comment: 15 pages, Revtex, 5 Postscript figures, uses aps.sty, epsfig.st

    Dilatation of Lateral Ventricles with Brain Volumes in Infants with 3D Transfontanelle US

    Full text link
    Ultrasound (US) can be used to assess brain development in newborns, as MRI is challenging due to immobilization issues, and may require sedation. Dilatation of the lateral ventricles in the brain is a risk factor for poorer neurodevelopment outcomes in infants. Hence, 3D US has the ability to assess the volume of the lateral ventricles similar to clinically standard MRI, but manual segmentation is time consuming. The objective of this study is to develop an approach quantifying the ratio of lateral ventricular dilatation with respect to total brain volume using 3D US, which can assess the severity of macrocephaly. Automatic segmentation of the lateral ventricles is achieved with a multi-atlas deformable registration approach using locally linear correlation metrics for US-MRI fusion, followed by a refinement step using deformable mesh models. Total brain volume is estimated using a 3D ellipsoid modeling approach. Validation was performed on a cohort of 12 infants, ranging from 2 to 8.5 months old, where 3D US and MRI were used to compare brain volumes and segmented lateral ventricles. Automatically extracted volumes from 3D US show a high correlation and no statistically significant difference when compared to ground truth measurements. Differences in volume ratios was 6.0 +/- 4.8% compared to MRI, while lateral ventricular segmentation yielded a mean Dice coefficient of 70.8 +/- 3.6% and a mean absolute distance (MAD) of 0.88 +/- 0.2mm, demonstrating the clinical benefit of this tool in paediatric ultrasound
    corecore