43 research outputs found

    Crop Classification Using Multi-Temporal Sentinel-2 Data in the Shiyang River Basin of China

    No full text
    Timely and accurate crop classification is of enormous significance for agriculture management. The Shiyang River Basin, an inland river basin, is one of the most prominent water resource shortage regions with intensive agriculture activities in northwestern China. However, a free crop map with high spatial resolution is not available in the Shiyang River Basin. The European Space Agency (ESA) satellite Sentinel-2 has multi-spectral bands ranging in the visible-red edge-near infrared-shortwave infrared (VIS-RE-NIR-SWIR) spectrum. Understanding the impact of spectral-temporal information on crop classification is helpful for users to select optimized spectral bands combinations and temporal window in crop mapping when using Sentinel-2 data. In this study, multi-temporal Sentinel-2 data acquired in the growing season in 2019 were applied to the random forest algorithm to generate the crop classification map at 10 m spatial resolution for the Shiyang River Basin. Four experiments with different combinations of feature sets were carried out to explore which Sentinel-2 information was more effective for higher crop classification accuracy. The results showed that the augment of multi-spectral and multi-temporal information of Sentinel-2 improved the accuracy of crop classification remarkably, and the improvement was firmly related to strategies of feature selections. Compared with other bands, red-edge band 1 (RE-1) and shortwave-infrared band 1 (SWIR-1) of Sentinel-2 showed a higher competence in crop classification. The combined application of images in the early, middle and late crop growth stage is significant for achieving optimal performance. A relatively accurate classification (overall accuracy = 0.94) was obtained by utilizing the pivotal spectral bands and dates of image. In addition, a crop map with a satisfied accuracy (overall accuracy > 0.9) could be generated as early as late July. This study gave an inspiration in selecting targeted spectral bands and period of images for acquiring more accurate and timelier crop map. The proposed method could be transferred to other arid areas with similar agriculture structure and crop phenology

    Derivation of regional aerodynamic roughness length by combining optical remote sensing and ground measurements over agricultural land in Heihe River Basin

    No full text
    Information of temporal and spatial variation of aerodynamic roughness length is required in most land surface models. The current research presents a practical approach for determining spatially distributed vegetation aerodynamic roughness length with fine temporal and spatial resolution by combining remote sensing and ground measurements. The basic framework of Raupach (1992), with the bulk surface parameters revised by Jasinski et al. (2005) has been applied to optical remote sensing data of HJ-1A/1B missions. In addition, a method for estimating regional scale vegetation height was introduced, so the aerodynamic roughness length, which is more preferred by users than the height normalized form has been developed. Direct validation on different vegetation classes have finally been performed taking advantage of the data-dense field experiments of Heihe Watershed Allied Telemetry Experimental Research (HiWATER). The roughness model had an overall good performance on most of Eddy Covariance sites of HiWATER. However, deviations still existed on different sites, and these have been further analyzed.</p

    Optimizing Window Length for Turbulent Heat Flux Calculations from Airborne Eddy Covariance Measurements under Near Neutral to Unstable Atmospheric Stability Conditions

    No full text
    Airborne eddy covariance (EC) is one of the most effective ways to directly measure turbulent flux at a regional scale. This study aims to find the optimum spatial window length for turbulent heat fluxes calculation from airborne eddy covariance measurements under near neutral to unstable atmospheric stability conditions, to reduce the negative influences from mesoscale turbulence, and to estimate local meaningful turbulent heat fluxes accurately. The airborne flux measurements collected in 2008 in the Netherlands were used in this study. Firstly, the raw data was preprocessed, including de-spike, segmentation, and stationarity test. The atmospheric stability conditions were classified as near neutral, moderately unstable, or very unstable; the stable condition was excluded. Secondly, Ogive analysis for turbulent heat fluxes from all available segmentations of the airborne measurements was used to determine the possible window length range. After that, the optimum window length for turbulent heat flux calculations was defined based on the analysis of all possible window lengths and their uncertainties. The results show that the choice of the optimum window length strongly depends on the atmospheric stability conditions. Under near neutral conditions, local turbulence is mixed insufficiently and vulnerable to heterogeneous turbulence. A relatively short window length is needed to exclude the influence of mesoscale turbulence, and we found the optimum window length ranges from 2000 m to 2500 m. Under moderately unstable conditions, the typical scale of local turbulence is relative large, and the influence of mesoscale turbulence is relatively small. We found the optimum window length ranges from 3900 m to 5000 m. Under very unstable conditions, large convective eddies dominate the transmission of energy so that the window length needs to cover the large eddies with large energy transmission. We found the optimum window length ranges from 4500 m to 5000 m. This study gives a comprehensive methodology to determine the optimizing window length in order to compromise a balance between the accuracy and the surface representativeness of turbulent heat fluxes from airborne EC measurements

    An Improved Differentiable Binarization Network for Natural Scene Street Sign Text Detection

    No full text
    The street sign text information from natural scenes usually exists in a complex background environment and is affected by natural light and artificial light. However, most of the current text detection algorithms do not effectively reduce the influence of light and do not make full use of the relationship between high-level semantic information and contextual semantic information in the feature extraction network when extracting features from images, and they are ineffective at detecting text in complex backgrounds. To solve these problems, we first propose a multi-channel MSER (Maximally Stable Extreme Regions) method to fully consider color information in text detection, which separates the text area in the image from the complex background, effectively reducing the influence of the complex background and light on street sign text detection. We also propose an enhanced feature pyramid network text detection method, which includes a feature pyramid route enhancement (FPRE) module and a high-level feature enhancement (HLFE) module. The two modules can make full use of the network&rsquo;s low-level and high-level semantic information to enhance the network&rsquo;s effectiveness in localizing text information and detecting text with different shapes, sizes, and inclined text. Experiments showed that the F-scores obtained by the method proposed in this paper on ICDAR 2015 (International Conference on Document Analysis and Recognition 2015) dataset, ICDAR2017-MLT (International Conference on Document Analysis and Recognition 2017- Competition on Multi-lingual scene text detection) dataset, and the Natural Scene Street Signs (NSSS) dataset constructed in this study are 89.5%, 84.5%, and 73.3%, respectively, which confirmed the performance advantage of the method proposed in street sign text detection

    An Improved Differentiable Binarization Network for Natural Scene Street Sign Text Detection

    No full text
    The street sign text information from natural scenes usually exists in a complex background environment and is affected by natural light and artificial light. However, most of the current text detection algorithms do not effectively reduce the influence of light and do not make full use of the relationship between high-level semantic information and contextual semantic information in the feature extraction network when extracting features from images, and they are ineffective at detecting text in complex backgrounds. To solve these problems, we first propose a multi-channel MSER (Maximally Stable Extreme Regions) method to fully consider color information in text detection, which separates the text area in the image from the complex background, effectively reducing the influence of the complex background and light on street sign text detection. We also propose an enhanced feature pyramid network text detection method, which includes a feature pyramid route enhancement (FPRE) module and a high-level feature enhancement (HLFE) module. The two modules can make full use of the network’s low-level and high-level semantic information to enhance the network’s effectiveness in localizing text information and detecting text with different shapes, sizes, and inclined text. Experiments showed that the F-scores obtained by the method proposed in this paper on ICDAR 2015 (International Conference on Document Analysis and Recognition 2015) dataset, ICDAR2017-MLT (International Conference on Document Analysis and Recognition 2017- Competition on Multi-lingual scene text detection) dataset, and the Natural Scene Street Signs (NSSS) dataset constructed in this study are 89.5%, 84.5%, and 73.3%, respectively, which confirmed the performance advantage of the method proposed in street sign text detection

    Building Floorplan Reconstruction Based on Integer Linear Programming

    No full text
    The reconstruction of the floorplan for a building requires the creation of a two-dimensional floorplan from a 3D model. This task is widely employed in interior design and decoration. In reality, the structures of indoor environments are complex with much clutter and occlusions, making it difficult to reconstruct a complete and accurate floorplan. It is well known that a suitable dataset is a key point to drive an effective algorithm, while existing datasets of floorplan reconstruction are synthetic and small. Without reliable accumulations of real datasets, the robustness of methods to real scene reconstruction is weakened. In this paper, we first annotate a large-scale realistic benchmark, which contains RGBD image sequences and 3D models of 80 indoor scenes with more than 10,000 square meters. We also introduce a framework for the floorplan reconstruction with mesh-based point cloud normalization. The loose-Manhattan constraint is performed in our optimization process, and the optimal floorplan is reconstructed via constraint integer programming. The experimental results on public and our own datasets demonstrate that the proposed method outperforms FloorNet and Floor-SP

    The Potential of Spent Coffee Grounds @ MOFs Composite Catalyst in Efficient Activation of PMS to Remove the Tetracycline Hydrochloride from an Aqueous Solution

    No full text
    The efficient removal of Tetracycline Hydrochloride (TC) from wastewater, which is a difficult process, has attracted increasing attention. Aiming to synchronously achieve the goal of natural waste utilization and PMS activation, we have combined the MOFs material with waste coffee grounds (CG). The catalytic activity of the CG@ZIF-67 composite in the TC removal process was thoroughly evaluated, demonstrating that the TC removal rate could reach 96.3% within 30 min at CG@ZIF-67 composite dosage of 100 mg/L, PMS concertation of 1.0 mM, unadjusted pH 6.2, and contact temperate of 293.15 K. The 1O2 and &middot;SO4&minus; in the CG@ZIF-67/PMS/TC system would play the crucial role in the TC degradation process, with 1O2 acting as the primary ROS. The oxygen-containing functional groups and graphite N on the surface of CG@ZIF-67 composite would play a major role in efficiently activating PMS and correspondingly degrading TC. In addition, the CG@ZIF-67/PMS/TC system could withstand a wide pH range (3&ndash;11). The application of CG in preparing MOF-based composites will provide a new method of removing emerging pollutants from an aqueous solution

    A quantified study method and its application to sustainable management of water resources in arid basins

    No full text
    According to the features of the basins in arid areas, in this paper a quantified study framework of sustainable management of water resources is developed, and the contents include mainly the quantification rules, index system, basic models and quantification method. A quantified study method (M-D method) about sustainable management of water resources is put forward based on the simulation and integrative development degree. In the method, the fuzzy subordinatness description and the multi-rule integration are used to calculate the integrative development degree so as to quantitatively describe the sustainable development degree of economic society; the mathematical simulation is used to quantitatively describe the interactions between water resources, economic society and ecosystems so as to lay a foundation for quantitatively giving expression to the development situation of economic society related to the management of water resources; based on the organic combination of these two, quantification rules and other constraint conditions, a quantified model of water resources management is developed. The M-D method is applied to developing a scientific scheme of water resources management in the Bosten Lake Basin, Xinjiang, China. &copy; Science in China Press 2007

    Early-Season Crop Identification in the Shiyang River Basin Using a Deep Learning Algorithm and Time-Series Sentinel-2 Data

    No full text
    Timely and accurate crop identification and mapping are of great significance for crop yield estimation, disaster warning, and food security. Early-season crop identification places higher demands on the quality and mining of time-series information than post-season mapping. In recent years, great strides have been made in the development of deep-learning algorithms, and the emergence of Sentinel-2 data with a higher temporal resolution has provided new opportunities for early-season crop identification. In this study, we aimed to fully exploit the potential of deep-learning algorithms and time-series Sentinel-2 data for early-season crop identification and early-season crop mapping. In this study, four classifiers, i.e., two deep-learning algorithms (one-dimensional convolutional networks and long and short-term memory networks) and two shallow machine-learning algorithms (a random forest algorithm and a support vector machine), were trained using early-season Sentinel-2 images and field samples collected in 2019. Then, these algorithms were applied to images and field samples for 2020 in the Shiyang River Basin. Twelve scenarios with different classifiers and time intervals were compared to determine the optimal combination for the earliest crop identification. The results show that: (1) the two deep-learning algorithms outperformed the two shallow machine-learning algorithms in early-season crop identification; (2) the combination of a one-dimensional convolutional network and 5-day interval time-series Sentinel-2 data outperformed the other schemes in obtaining the early-season crop identification time and achieving early mapping; and (3) the early-season crop identification mapping time in the Shiyang River Basin was identified as the end of July, and the overall classification accuracy reached 0.83. In addition, the early identification time for each crop was as follows: the wheat was in the flowering stage (mid-late June); the alfalfa was in the first harvest (mid-late June); the corn was in the early tassel stage (mid-July); the fennel and sunflower were in the flowering stage (late July); and the melons were in the fruiting stage (around late July). This study demonstrates the potential of using Sentinel-2 time-series data and deep-learning algorithms to achieve early-season crop identification, and this method is expected to provide new solutions and ideas for addressing early-season crop identification monitoring
    corecore