56 research outputs found

    Morphological Dependence of Star Formation Properties for the Galaxies in the Merging Galaxy Cluster A2255

    Full text link
    The merging cluster of galaxies A2255 is covered by the Sloan Digital Sky Survey (SDSS) survey. In this paper we perform a morphological classification on the basis of the SDSS imaging and spectral data, and investigate the morphological dependence of the star formation rates (SFRs) for these member galaxies. As we expect, a tight correlation between the normalized SFR by stellar mass (SFR/M∗_*) and the Hα\alpha equivalent width is found for the late-type galaxies in A2255. The correlation of SFR/M∗_* with the continuum break strength at 4000 \AA is also confirmed. The SFR/M∗_* - M∗_* correlation is found for both the early- and late-type galaxies, indicating that the star formation activity tends to be suppressed when the assembled stellar mass M∗_*) increases, and this correlation is tighter and steeper for the late-type cluster galaxies. Compared with the mass range of field spiral galaxies, only two massive late-type galaxies with M∗>1011_*>10^{11} M⊙_{\odot} are survived in A2255, suggesting that the gas disks of massive spiral galaxies could have been tidally stripped during cluster formation. Additionally, the SFR variation with the projected radial distance are found to be heavily dependent upon galaxy morphology: the early-type galaxies have a very weak inner decrease in SFR/M∗_*, while the inner late-type galaxies tend to have higher SFR/M∗_* values than the outer late-types. This may suggest that the galaxy-scale turbulence stimulated by the merging of subclusters might have played different roles on early- and late-type galaxies, which leads to a suppression of the star formation activity for E/S0 galaxies and a SFR enhancement for spiral and irregular galaxies.Comment: 21 pages, including 7 EPS figures and 1 tables, uses aastex.cls, Accepted by the A

    Impaired Autophagy and Exosomes Release by Long-Term mTOR Pathway Activation Promotes Hepatocellular Carcinoma Occurrence and Invasion

    Get PDF
    Mammalian target of rapamycin (mTOR) is highly expressed in various types of hepatocellular carcinoma (HCC). Clinically, HCC cases without inflammation and cirrhosis are also increasingly common, especially in patients with nonalcoholic fatty liver disease, more and more patients develop HCC, which is only characterized by hepatic steatosis. However, the molecular mechanisms underlying the development of non-inflammatory HCC remain unclearly. Our previous study demonstrated that overactivation of mTOR pathway in the liver promotes de novo lipid synthesis and eventually spontaneous formation of non-inflammatory HCC. The continuous activation of mTOR pathway, on the one hand, promotes the de novo synthesis of lipids, resulting in the production of a large amount of lipid in the liver; on the other hand, it inhibits autophagy, resulting in the inability of lipid to be removed in time and accumulate in the liver. Accumulated lipid peroxidation eventually develops into HCC. In addition, the continuously activated mTOR pathway inhibited the release of exosomes by reducing the expression of Rab27A, and in vitro experiments confirmed that hepatoma cells after Rab27A knockout were more prone to invasion and metastasis. The reduced release of exosomes may impair intercellular communication, especially with immune cells, thereby making HCC more prone to invasion and metastasis with less inflammation

    Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes

    No full text
    Plants are capable of releasing specific root exudates to recruit beneficial rhizosphere microbes upon foliar pathogen invasion attack, including long-chain fatty acids, amino acids, short-chain organic acids and sugars. Although long-chain fatty acids and amino acids application have been linked to soil legacy effects that improve future plant performance in the presence of the pathogen, the precise mechanisms involved are to a large extent still unknown. Here, we conditioned soils with long-chain fatty acids and amino acids application (L + A) or short-chain organic acids and sugars (S + S) to examine the direct role of such exudates on soil microbiome structure and function. The L + A treatment recruited higher abundances of Proteobacteria which were further identified as members of the genera Sphingomonas, Pseudomonas, Roseiflexus, and Flavitalea. We then isolated the enriched bacterial strains from these groups, identifying ten Pseudomonas strains that were able to help host plant to resist foliar pathogen infection. Further investigation showed that the L + A treatment resulted in growth promotion of these Pseudomonas strains. Collectively, our data suggest that long-chain fatty acids and amino acids stimulated by foliar pathogen infection can recruit specific Pseudomonas populations that can help protect the host plant or future plant generations.[Figure not available: see fulltext.

    Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes

    No full text
    Plants are capable of releasing specific root exudates to recruit beneficial rhizosphere microbes upon foliar pathogen invasion attack, including long-chain fatty acids, amino acids, short-chain organic acids and sugars. Although long-chain fatty acids and amino acids application have been linked to soil legacy effects that improve future plant performance in the presence of the pathogen, the precise mechanisms involved are to a large extent still unknown. Here, we conditioned soils with long-chain fatty acids and amino acids application (L + A) or short-chain organic acids and sugars (S + S) to examine the direct role of such exudates on soil microbiome structure and function. The L + A treatment recruited higher abundances of Proteobacteria which were further identified as members of the genera Sphingomonas, Pseudomonas, Roseiflexus, and Flavitalea. We then isolated the enriched bacterial strains from these groups, identifying ten Pseudomonas strains that were able to help host plant to resist foliar pathogen infection. Further investigation showed that the L + A treatment resulted in growth promotion of these Pseudomonas strains. Collectively, our data suggest that long-chain fatty acids and amino acids stimulated by foliar pathogen infection can recruit specific Pseudomonas populations that can help protect the host plant or future plant generations.[Figure not available: see fulltext.

    Risk assessment and dissemination mechanism of antibiotic resistance genes in compost

    No full text
    In recent years, the excessive of antibiotics in livestock and poultry husbandry, stemming from extensive industry experience, has resulted in the accumulation of residual antibiotics and antibiotic resistance genes (ARGs) in livestock manure. Composting, as a crucial approach for the utilization of manure resources, has the potential to reduce the levels of antibiotics and ARGs in manure, although complete elimination is challenging. Previous studies have primarily focused on the diversity and abundance of ARGs in compost or have solely examined the correlation between ARGs and their carriers, potentially leading to a misjudgment of the actual risk associated with ARGs in compost. To address this gap, this study investigated the transfer potential of ARGs in compost and their co-occurrence with opportunistic pathogenic bacteria by extensively analyzing metagenomic sequencing data of compost worldwide. The results demonstrated that the potential risk of ARGs in compost was significantly lower than in manure, suggesting that composting effectively reduces the risk of ARGs. Further analysis showed that the microbes shifted their life history strategy in manure and compost due to antibiotic pressure and formed metabolic interactions dominated by antibiotic-resistant microbes, increasing ARG dissemination frequency. Therefore, husbandry practice without antibiotic addition was recommended to control ARG evolution, dissemination, and abatement both at the source and throughout processing

    A Combination of UTMD-Mediated HIF-1α shRNA Transfection and TAE in the Treatment of Hepatic Cancer

    No full text
    To explore the antitumor effect of hypoxia-inducible factor-1α short hairpin RNA (HIF-1α shRNA) delivered by ultrasound targeted microbubble destruction (UTMD) and transcatheter arterial embolization (TAE) on rats with hepatic cancer. After the models of transplantation hepatoma were established, Wistar rats were randomly divided into 4 groups: Control group, UTMD group, TAE group, and UTMD+TAE group. Contrast-enhanced ultrasound (CEUS) was used to monitor tumor size on day 14 after four different treatments. Western blotting and immunohistochemistry were applied to measure the protein level of HIF-1α and VEGF in the hepatic cancer tissue. In comparison with UTMD+TAE group (21.25±10.68 days), the mean survival time was noticeably shorter in the Control group and TAE group (13.02±4.30 days and 15.03±7.32 days) (p0.05). In addition, our results proved that the tumor sizes in UTMD+TAE group were obviously smaller than those in other groups (p0.05). In this study we tried to explore the antitumor effect through a combination of UTMD-mediated HIF-1α shRNA transfection and TAE on rats with hepatic cancer. Our results showed that UTMD-mediated HIF-1α shRNA transfection and TAE can obviously silence HIF-1α and VEGF expression, thereby successfully inhibiting the growth of the tumor

    Pectin Enhances Bio-Control Efficacy by Inducing Colonization and Secretion of Secondary Metabolites by Bacillus amyloliquefaciens SQY 162 in the Rhizosphere of Tobacco.

    No full text
    Bacillus amyloliquefaciens is a plant-beneficial Gram-positive bacterium involved in suppressing soil-borne pathogens through the secretion of secondary metabolites and high rhizosphere competence. Biofilm formation is regarded as a prerequisite for high rhizosphere competence. In this work, we show that plant extracts affect the chemotaxis and biofilm formation of B. amyloliquefaciens SQY 162 (SQY 162). All carbohydrates tested induced the chemotaxis and biofilm formation of the SQY 162 strain; however, the bacterial growth rate was not influenced by the addition of carbohydrates. A strong chemotactic response and biofilm formation of SQY 162 were both induced by pectin through stimulation of surfactin synthesis and transcriptional expression of biofilm formation related matrix genes. These results suggested that pectin might serve as an environmental factor in the stimulation of the biofilm formation of SQY 162. Furthermore, in pot experiments the surfactin production and the population of SQY 162 in the rhizosphere significantly increased with the addition of sucrose or pectin, whereas the abundance of the bacterial pathogen Ralstonia decreased. With increased production of secondary metabolites in the rhizosphere of tobacco by SQY 162 and improved colonization density of SQY 162 in the pectin treatment, the disease incidences of bacterial wilt were efficiently suppressed. The present study revealed that certain plant extracts might serve as energy sources or environmental cues for SQY 162 to enhance the population density on tobacco root and bio-control efficacy of tobacco bacterial wilt

    Application of coronarin enhances maize drought tolerance by affecting interactions between rhizosphere fungal community and metabolites

    No full text
    Coronarin (COR), an analog of jasmonic acid, has been shown to enhance the tolerance of plants to drought. However, the effects of COR on the interactions among microorganisms associated with plant roots and their implications for enhancing the drought tolerance of plants remain unclear. Here, we studied the effects of applying COR on the microorganisms associated with plant roots and the rhizosphere metabolome. Treatment with COR affected the fungal community of the rhizosphere by inducing changes in the rhizosphere metabolome, which enhanced the drought tolerance of plants. However, treatment with COR had no significant effect on root microorganisms or rhizosphere bacteria. Specifically, the application of COR resulted in a significant reduction in the relative abundance of metabolites, such as mucic acid, 1,4-cyclohexanedione, 4-acetylbutyric acid, Ribonic acid, palmitic acid, and stearic acid, in maize roots under drought conditions; COR application also led to increases in the abundance of drought-resistant fungal microorganisms, including Rhizopus, and the assembly of a highly drought-resistant rhizosphere fungal network, which enhanced the drought tolerance of plants. Overall, the results of our study indicate that COR application positively regulates interactions between plants and microbes and increases the drought tolerance of plants

    Growth substrates alter aboveground plant microbial and metabolic properties thereby influencing insect herbivore performance

    Get PDF
    The gut microbiome of plant-eaters is affected by the food they eat, but it is currently unclear how the plant metabolome and microbiome are influenced by the substrate the plant grows in and how this subsequently impacts the feeding behavior and gut microbiomes of insect herbivores. Here, we use Plutella xylostella caterpillars and show that the larvae prefer leaves of cabbage plants growing in a vermiculite substrate to those from plants growing in conventional soil systems. From a plant metabolomics analysis, we identified 20 plant metabolites that were related to caterpillar feeding performance. In a bioassay, the effects of these plant metabolites on insects’ feeding were tested. Nitrate and compounds enriched with leaves of soilless cultivation promoted the feeding of insects, while compounds enriched with leaves of plants growing in natural soil decreased feeding. Several microbial groups (e.g., Sporolactobacillus, Haliangium) detected inside the plant correlated with caterpillar feeding performance and other microbial groups, such as Ramlibacter and Methylophilus, correlated with the gut microbiome. Our results highlight the role of growth substrates on the food metabolome and microbiome and on the feeding performance and the gut microbiome of plant feeders. It illustrates how belowground factors can influence the aboveground properties of plant-animal systems, which has important implications for plant growth and pest control
    • …
    corecore