31 research outputs found

    Dual-transgenic BiFC vector systems for protein-protein interaction analysis in plants

    Get PDF
    Protein-protein interaction (PPI) play a pivotal role in cellular signal transduction. The bimolecular fluorescence complementation (BiFC) assay offers a rapid and intuitive means to ascertain the localization and interactions of target proteins within living cells. BiFC is based on fluorescence complementation by reconstitution of a functional fluorescent protein by co-expression of N- and C-terminal fragments of this protein. When fusion proteins interact, the N- and C-terminal fragments come into close proximity, leading to the reconstitution of the fluorescent protein. In the conventional approach, the N-terminal and C-terminal fragments of the fluorescent protein are typically expressed using two separate vectors, which largely relies on the efficiency of the transformation of the two vectors in the same cells. Furthermore, issues of vector incompatibility can often result in loss of one plasmid. To address these challenges, we have developed novel dual-transgenic BiFC vectors, designed as pDTQs, derived from the previously published pDT1 vector. This set of BiFC vectors offers the following advantages: 1) Both fluorescent fusion proteins are expressed sequentially within a single vector, enhancing expression efficiency; 2) Independent promoters and terminators regulate the expression of the two proteins potentially mitigating vector compatibility issues; 3) A long linker is inserted between the fluorescent protein fragment and the gene of interest, facilitating the recombination of the fused fluorescent protein into an active form; 4) Four distinct types of fluorescent proteins, namely, EYFP, mVenus, mRFP1Q66T and mCherry are available for BiFC analysis. We assessed the efficiency of the pDTQs system by investigating the oligomerization of Arabidopsis CRY2 and CRY2-BIC2 interactions in N. benthamiana. Notably, the pDTQs were found to be applicable in rice, underscoring their potential utility across various plant species

    Medicarpin induces G1 arrest and mitochondria-mediated intrinsic apoptotic pathway in bladder cancer cells

    Get PDF
    Bladder cancer (BC) is the tenth most commonly diagnosed cancer. High recurrence, chemoresistance, and low response rate hinder the effective treatment of BC. Hence, a novel therapeutic strategy in the clinical management of BC is urgently needed. Medicarpin (MED), an isoflavone from Dalbergia odorifera, can promote bone mass gain and kill tumor cells, but its anti-BC effect remains obscure. This study revealed that MED effectively inhibited the proliferation and arrested the cell cycle at the G1 phase of BC cell lines T24 and EJ-1 in vitro. In addition, MED could significantly suppress the tumor growth of BC cells in vivo. Mechanically, MED induced cell apoptosis by upregulating pro-apoptotic proteins BAK1, Bcl2-L-11, and caspase-3. Our data suggest that MED suppresses BC cell growth in vitro and in vivo via regulating mitochondria-mediated intrinsic apoptotic pathways, which can serve as a promising candidate for BC therapy

    A Subset of CXCR5+CD8+ T Cells in the Germinal Centers From Human Tonsils and Lymph Nodes Help B Cells Produce Immunoglobulins

    Get PDF
    Recent studies indicated that CXCR5+CD8+ T cells in lymph nodes could eradicate virus-infected target cells. However, in the current study we found that a subset of CXCR5+CD8+ T cells in the germinal centers from human tonsils or lymph nodes are predominately memory cells that express CD45RO and CD27. The involvement of CXCR5+CD8+ T cells in humoral immune responses is suggested by their localization in B cell follicles and by the concomitant expression of costimulatory molecules, including CD40L and ICOS after activation. In addition, CXCR5+CD8+ memory T cells produced significantly higher levels of IL-21, IFN-γ, and IL-4 at mRNA and protein levels compared to CXCR5−CD8+ memory T cells, but IL-21-expressing CXCR5+CD8+ T cells did not express Granzyme B and perforin. When cocultured with sorted B cells, sorted CXCR5+CD8+ T cells promoted the production of antibodies compared to sorted CXCR5−CD8+ T cells. However, fixed CD8+ T cells failed to help B cells and the neutralyzing antibodies against IL-21 or CD40L inhibited the promoting effects of sorted CXCR5+CD8+ T cells on B cells for the production of antibodies. Finally, we found that in the germinal centers of lymph nodes from HIV-infected patients contained more CXCR5+CD8+ T cells compared to normal lymph nodes. Due to their versatile functional capacities, CXCR5+CD8+ T cells are promising candidate cells for immune therapies, particularly when CD4+ T cell help are limited

    The function of chemical folic acid in calibration methods and neurodevelopmental disorders

    Get PDF
    Functional molecules have been attracting increasing attention in environmental and physiological studies. In particular, folic acid (FA) could be considered a key factor in estimating, adjusting, and making decisions in the treatment of neurodevelopmental disorders. It promotes the general significance and conceptual for considering FA molecular scientific research detections, which implies related advancement in both of biological structure and detection methods. Among these applications, the FA molecule acts as a coenzyme that incorporates carbon atoms and synthesizes purines and pyrimidines. Therefore, the calibration method has real applications and can be used as a sensing platform and for detection approaches, which conveys the internal relationship between the FA molecule and physiological characterization. This mini review briefly discusses multiple FA application fields and detection pathways and could supplement their utilization in anticipation of the onset of disease

    Clinical Utility of the Sivelestat for the Treatment of ALI/ARDS: Moving on in the Controversy?

    No full text
    Abstract Acute respiratory distress syndrome (ARDS) is a serious condition that can arise following direct or indirect acute lung injury (ALI). It is heterogeneous and has a high mortality rate. Supportive care is the mainstay of treatment and there is no definitive pharmacological treatment as yet. In nonclinical studies, neutrophil elastase inhibitor sivelestat appears to show benefit in ARDS without inhibiting the host immune defense in cases of infection. In clinical studies, the efficacy of sivelestat in the treatment of ARDS remains controversial. The currently available evidence suggests that sivelestat may show some benefit in the treatment of ARDS, although large, randomized controlled trials are needed in specific pathophysiological conditions to explore these potential benefits

    Tobacco crop substitution: pilot effort in China.

    No full text
    In China, approximately 20 million farmers produce the world's largest share of tobacco. Showing that income from crop substitution can exceed that from tobacco growth is essential to persuading farm families to stop planting tobacco, grown abundantly in Yunnan Province. In the Yuxi Municipality, collaborators from the Yuxi Bureau of Agriculture and the University of California at Los Angeles School of Public Health initiated a tobacco crop substitution project. At 3 sites, 458 farm families volunteered to participate in a new, for-profit cooperative model. This project successfully identified an approach engaging farmers in cooperatives to substitute food crops for tobacco, thereby increasing farmers' annual income between 21% and 110% per acre

    Effect of Sivelestat in the Treatment of Acute Lung Injury and Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis

    No full text
    Abstract Background The efficacy of neutrophil elastase inhibitor sivelestat in the treatment of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) remains controversial. A systematic review and meta-analysis were performed in accordance with the PRISMA guidelines assess the effect of sivelestat on ALI/ARDS patients, different studies were included. Methods Electronic databases, National Knowledge Infrastructure (CNKI), Wan fang data, VIP, PubMed, Embase, Springer, Ovid and the Cochrane Library were searched using the following key words: (“Sivelestat” OR “Elaspol”) AND (“ARDS” OR “adult respiratory distress syndrome” OR “acute lung injury”). All databases published from January 2000 to August 2022. The treatment group was treated with sivelestat and the control group was given normal saline. The outcome measurements include the mortality of 28–30 days, mechanical ventilation time, ventilation free days, intensive care unit (ICU) stays, oxygenation index (PaO2/FiO2) on day 3, the incidence of adverse events. The literature search was conducted independently by 2 researchers using standardized methods. We used the Cochrane risk-of-bias tool to assess the quality of the included studies. Mean difference (MD), Standardized mean difference (SMD) and relative risk (RR) were calculated using random effects model or fixed effects model. All statistical analyses were performed using RevMan software 5.4. Results A total of 2050 patients were enrolled in 15 studies, including 1069 patients in treatment group and 981 patients in the control group. The results of the meta-analysis showed that: compared with the control group, sivelestat can reduce the mortality of 28–30 days (RR = 0.81, 95% CI = 0.66–0.98, p = 0.03) and the incidence of adverse events (RR = 0.91, 95% CI = 0.85–0.98, p = 0.01), shortened mechanical ventilation time (SMD = − 0.32, 95% CI = − 0.60 to − 0.04, p = 0.02) and ICU stays (SMD = − 0.72, 95% CI = − 0.92 to − 0.52, p < 0.00001), increased the ventilation free days (MD = 3.57, 95% CI = 3.42–3.73, p < 0.00001) and improve oxygenation index (PaO2/FiO2) on day 3 (SMD = 0.88, 95% CI = 0.39–1.36, p = 0.0004). Conclusions Sivelestat can not only reduce the mortality of ALI/ARDS patients within 28–30 days and the incidence of adverse events, shorten the mechanical ventilation time and ICU stays, increase ventilation free days, but also improve the oxygenation index of patients on days 3, which has a good effect on the treatment of ALI/ARDS. These findings need to be verified in large-scale trials

    τ is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase

    Get PDF
    AbstractAlzheimer disease is characterized by a specific type of neuronal degeneration in which the microtubule associated protein τ is abnormally hyperphosphorylated causing the disruption of the microtubule network. We have found that the phosphorylation of human τ (τ3L) by A-kinase, GSK-3 or CK-1 inhibits its microtubule assembly-promoting and microtubule-binding activities. However, the inhibition of these activities of τ by GSK-3 is significantly increased if τ is prephosphorylated by A-kinase or CK-1. The most potent inhibition is observed by combination phosphorylation of τ with A-kinase and GSK-3. Under these conditions, only very few microtubules are seen by electron microscopy. Sequencing of 32P-labeled trypsin phosphopeptides from τ prephosphorylated by A-kinase (using unlabeled ATP) and further phosphorylated by GSK-3 in the presence of [γ-32P]ATP revealed that Ser-195, Ser-198, Ser-199, Ser-202, Thr-205, Thr-231, Ser-235, Ser-262, Ser-356 and Ser-404 are phosphorylated, whereas if τ is not prephosphorylated by A-kinase, GSK-3 phosphorylates it at Thr-181, Ser-184, Ser-262, Ser-356 and Ser-400. These data suggest that (i) prephosphorylation of τ by A-kinase makes additional and different sites accessible for phosphorylation by GSK-3; (ii) phosphorylation of τ at these additional sites further inhibits the biological activity of τ in its ability to bind to microtubules and promote microtubule assembly. Thus a combined role of A-kinase and GSK-3 should be considered in Alzheimer neurofibrillary degeneration
    corecore