33 research outputs found

    Metabonomic analysis of follicular fluid in patients with diminished ovarian reserve

    Get PDF
    BackgroundOvarian reserve is an important factor determining female reproductive potential. The number and quality of oocytes in patients with diminished ovarian reserve (DOR) are reduced, and even if in vitro fertilization-embryo transfer (IVF-ET) is used to assist their pregnancy, the clinical pregnancy rate and live birth rate are still low. Infertility caused by reduced ovarian reserve is still one of the most difficult clinical problems in the field of reproduction. Follicular fluid is the microenvironment for oocyte survival, and the metabolic characteristics of follicular fluid can be obtained by metabolomics technology. By analyzing the metabolic status of follicular fluid, we hope to find the metabolic factors that affect the quality of oocytes and find new diagnostic markers to provide clues for early detection and intervention of patients with DOR.MethodsIn this research, 26 infertile women with DOR and 28 volunteers with normal ovarian reserve receiving IVF/ET were recruited, and their follicular fluid samples were collected for a nontargeted metabonomic study. The orthogonal partial least squares discriminant analysis model was used to understand the separation trend of the two groups, KEGG was used to analyze the possible metabolic pathways involved in differential metabolites, and the random forest algorithm was used to establish the diagnostic model.Results12 upregulated and 32 downregulated differential metabolites were detected by metabolic analysis, mainly including amino acids, indoles, nucleosides, organic acids, steroids, phospholipids, fatty acyls, and organic oxygen compounds. Through KEGG analysis, these metabolites were mainly involved in aminoacyl-tRNA biosynthesis, tryptophan metabolism, pantothenate and CoA biosynthesis, and purine metabolism. The AUC value of the diagnostic model based on the top 10 metabolites was 0.9936.ConclusionThe follicular fluid of patients with DOR shows unique metabolic characteristics. These data can provide us with rich biochemical information and a research basis for exploring the pathogenesis of DOR and predicting ovarian reserve function

    Barrett’s Esophagus and Intestinal Metaplasia

    Get PDF
    Intestinal metaplasia refers to the replacement of the differentiated and mature normal mucosal epithelium outside the intestinal tract by the intestinal epithelium. This paper briefly describes the etiology and clinical significance of intestinal metaplasia in Barrett’s esophagus. This article summarizes the impact of intestinal metaplasia on the diagnosis, monitoring, and treatment of Barrett’s esophagus according to different guidelines. We also briefly explore the basis for the endoscopic diagnosis of intestinal metaplasia in Barrett’s esophagus. The identification techniques of goblet cells in Barrett’s esophagus are also elucidated by some scholars. Additionally, we further elaborate on the current treatment methods related to Barrett’s esophagus

    I4U Submission to NIST SRE 2018: Leveraging from a Decade of Shared Experiences

    Get PDF
    The I4U consortium was established to facilitate a joint entry to NIST speaker recognition evaluations (SRE). The latest edition of such joint submission was in SRE 2018, in which the I4U submission was among the best-performing systems. SRE'18 also marks the 10-year anniversary of I4U consortium into NIST SRE series of evaluation. The primary objective of the current paper is to summarize the results and lessons learned based on the twelve sub-systems and their fusion submitted to SRE'18. It is also our intention to present a shared view on the advancements, progresses, and major paradigm shifts that we have witnessed as an SRE participant in the past decade from SRE'08 to SRE'18. In this regard, we have seen, among others, a paradigm shift from supervector representation to deep speaker embedding, and a switch of research challenge from channel compensation to domain adaptation.Comment: 5 page

    I4U Submission to NIST SRE 2018: Leveraging from a Decade of Shared Experiences

    Get PDF
    The I4U consortium was established to facilitate a joint entry to NIST speaker recognition evaluations (SRE). The latest edition of such joint submission was in SRE 2018, in which the I4U submission was among the best-performing systems. SRE'18 also marks the 10-year anniversary of I4U consortium into NIST SRE series of evaluation. The primary objective of the current paper is to summarize the results and lessons learned based on the twelve subsystems and their fusion submitted to SRE'18. It is also our intention to present a shared view on the advancements, progresses, and major paradigm shifts that we have witnessed as an SRE participant in the past decade from SRE'08 to SRE'18. In this regard, we have seen, among others , a paradigm shift from supervector representation to deep speaker embedding, and a switch of research challenge from channel compensation to domain adaptation

    I4U Submission to NIST SRE 2018: Leveraging from a Decade of Shared Experiences

    Get PDF
    International audienceThe I4U consortium was established to facilitate a joint entry to NIST speaker recognition evaluations (SRE). The latest edition of such joint submission was in SRE 2018, in which the I4U submission was among the best-performing systems. SRE'18 also marks the 10-year anniversary of I4U consortium into NIST SRE series of evaluation. The primary objective of the current paper is to summarize the results and lessons learned based on the twelve subsystems and their fusion submitted to SRE'18. It is also our intention to present a shared view on the advancements, progresses, and major paradigm shifts that we have witnessed as an SRE participant in the past decade from SRE'08 to SRE'18. In this regard, we have seen, among others , a paradigm shift from supervector representation to deep speaker embedding, and a switch of research challenge from channel compensation to domain adaptation

    Identifying DUSP-1 and FOSB as hub genes in immunoglobulin A nephropathy by WGCNA and DEG screening and validation

    No full text
    Background The mechanism of immunoglobulin A nephropathy (IgAN) is still unknown. A bioinformatics analysis is a powerful method to identify the biomarkers and possible therapeutic targets of a certain disease from related datasets. Methods The GSE93973 dataset, obtained from the Gene Expression Omnibus (GEO) database, was used to construct a weighted gene co-expression network (WGCNA) and filter differentially expressed genes (DEGs). The biological process (BP) enrichment among all the genes in the key modules was analyzed through a Gene Ontology (GO) enrichment analysis. We selected the overlap of hub genes in the WGCNA and Protein-Protein Interaction (PPI) network as the final hub genes in IgAN. We verified the final hub genes in two other datasets and in clinical kidney tissue specimens. A receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of hub genes for IgAN. Results The turquoise module, which contained 1,806 genes, was the module with the highest correlation coefficient with IgAN in the GSE93973 dataset. The GO enrichment analysis showed that these 1,806 genes were mainly enriched in inflammation and immune responses. There were five hub genes identified by WGCNA and 34 hub genes identified in a DEG analysis in the GSE93973 dataset. DUSP1 and FOSB were identified as the final hub genes in IgAN. The validation results of the final hub genes in two other databases and clinical kidney tissue specimens validated the result that, compared to the control group, FOSB and DUSP1 were expressed at lower levels in the glomerulus of IgAN patients. The ROC curve indicated that DUSP1 and FOSB were good diagnostic indicators for IgAN. Conclusions Our analysis identified two hub genes that might be potential targets for the intervention and treatment of IgAN

    A Novel Multi-Model Decision Fusion Network for Object Detection in Remote Sensing Images

    No full text
    Object detection in optical remote sensing images is still a challenging task because of the complexity of the images. The diversity and complexity of geospatial object appearance and the insufficient understanding of geospatial object spatial structure information are still the existing problems. In this paper, we propose a novel multi-model decision fusion framework which takes contextual information and multi-region features into account for addressing those problems. First, a contextual information fusion sub-network is designed to fuse both local contextual features and object-object relationship contextual features so as to deal with the problem of the diversity and complexity of geospatial object appearance. Second, a part-based multi-region fusion sub-network is constructed to merge multiple parts of an object for obtaining more spatial structure information about the object, which helps to handle the problem of the insufficient understanding of geospatial object spatial structure information. Finally, a decision fusion is made on all sub-networks to improve the stability and robustness of the model and achieve better detection performance. The experimental results on a publicly available ten class data set show that the proposed method is effective for geospatial object detection

    The Neutrophil-to-Monocyte Ratio and Platelet-to-White Blood Cell Ratio Represent Novel Prognostic Markers in Patients with Pancreatic Cancer

    No full text
    Background. Inflammation plays an important role in the development of tumors. Several serum based-markers and ratios have been investigated for their prognostic value in pancreatic cancer. However, the prognostic value of the neutrophil-to-monocyte ratio (NMR) and platelet-to-white blood cell ratio (PWR) for patients with pancreatic cancer has scarcely been investigated. Methods. From October 2013 to November 2018, a retrospective cohort study was performed on 269 pancreatic cancer patients without treatment. Receiver operating characteristic curves were generated, and areas under the curve were compared for the evaluation of the discriminatory ability of inflammation-based prognostic scoring systems. Kaplan-Meier curves and the Cox proportional hazard model were employed to analyze the relationships among NMR, PWR, and overall survival (OS). Results. The optimal cutoff values of NMR and PWR were 48 and 6, respectively. In univariate analysis, the survival time of NMR>48 and PWR≤6 was shorter than that of NMR≤48 and PWR>6 in patients with pancreatic cancer (P48) and depressed PWR (<6) were independently associated with poor prognosis in patients with pancreatic cancer
    corecore