9 research outputs found

    DC-SIGN promotes Japanese encephalitis virus transmission from dendritic cells to T cells via virological synapses.

    Get PDF
    Skin-resident dendritic cells (DCs) likely encounter incoming viruses in the first place, and their migration to lymph nodes following virus capture may promote viral replication. However, the molecular mechanisms underlying these processes remain unclear. In the present study, we found that compared to cell-free viruses, DC-bound viruses showed enhanced capture of JEV by T cells. Additionally, JEV infection was increased by co-culturing DCs and T cells. Blocking the C-type lectin receptor DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) with neutralizing antibodies or antagonists blocked JEV transmission to T cells. Live-cell imaging revealed that DCs captured and transferred JEV viral particles to T cells via virological synapses formed at DC-T cell junctions. These findings indicate that DC-SIGN plays an important role in JEV transmission from DCs to T cells and provide insight into how JEV exploits the migratory and antigen-presenting capabilities of DCs to gain access to lymph nodes for dissemination and persistence in the host

    Virus-Like Particles of SARS-Like Coronavirus Formed by Membrane Proteins from Different Origins Demonstrate Stimulating Activity in Human Dendritic Cells

    Get PDF
    The pathogenesis of SARS coronavirus (CoV) remains poorly understood. In the current study, two recombinant baculovirus were generated to express the spike (S) protein of SARS-like coronavirus (SL-CoV) isolated from bats (vAcBS) and the envelope (E) and membrane (M) proteins of SARS-CoV, respectively. Co-infection of insect cells with these two recombinant baculoviruses led to self-assembly of virus-like particles (BVLPs) as demonstrated by electron microscopy. Incorporation of S protein of vAcBS (BS) into VLPs was confirmed by western blot and immunogold labeling. Such BVLPs up-regulated the level of CD40, CD80, CD86, CD83, and enhanced the secretion of IL-6, IL-10 and TNF-α in immature dendritic cells (DCs). Immune responses were compared in immature DCs inoculated with BVLPs or with VLPs formed by S, E and M proteins of human SARS-CoV. BVLPs showed a stronger ability to stimulate DCs in terms of cytokine induction as evidenced by 2 to 6 fold higher production of IL-6 and TNF-α. Further study indicated that IFN-γ+ and IL-4+ populations in CD4+ T cells increased upon co-cultivation with DCs pre-exposed with BVLPs or SARS-CoV VLPs. The observed difference in DC-stimulating activity between BVLPs and SARS CoV VLPs was very likely due to the S protein. In agreement, SL-CoV S DNA vaccine evoked a more vigorous antibody response and a stronger T cell response than SARS-CoV S DNA in mice. Our data have demonstrated for the first time that SL-CoV VLPs formed by membrane proteins of different origins, one from SL-CoV isolated from bats (BS) and the other two from human SARS-CoV (E and M), activated immature DCs and enhanced the expression of co-stimulatory molecules and the secretion of cytokines. Finding in this study may provide important information for vaccine development as well as for understanding the pathogenesis of SARS-like CoV
    corecore