4 research outputs found

    Quercetin Alleviates Endoplasmic Reticulum Stress-Induced Apoptosis in Buffalo Ovarian Granulosa Cells

    No full text
    Endoplasmic reticulum (ER) stress plays a crucial role in granulosa cell (GCs) apoptosis, which is the main cause of follicular atresia. Quercetin (QC), a plant-derived flavonoid, has antioxidant, anti-inflammatory, and other biological properties. However, whether QC can alleviate the effects of ER stress on buffalo GCs remains unknown. In this study, we constructed an ER stress model in buffalo GCs by using tunicamycin (TM) and pre-treated with QC to explore the effect of QC on cells under ER stress. Apoptosis was detected by Annexin fluorescein 5 isothiocyanate (V-FITC), and the expressions of mRNA and related proteins involved in ER stress and apoptosis were detected via real-time polymerase chain reaction and Western blot. The results revealed that ER stress can cause apoptosis in GCs, whereas QC pre-treatment can prevent apoptosis caused by ER stress. After pre-treatment with QC, the expression levels of ER stress-related genes and proteins significantly decreased, pro-apoptotic genes were significantly down-regulated, and anti-apoptotic genes were significantly up-regulated. Furthermore, the results of Chop gene overexpression suggested that QC alleviated ER stress via the PERK/CHOP signaling pathway. In this study, we preliminarily elucidated that QC alleviates ER stress-induced apoptosis in buffalo GCs, and the results suggest a novel strategy for delaying follicular atresia by inhibiting GCs apoptosis

    Genomic Identification, Evolution, and Expression Analysis of Bromodomain Genes Family in Buffalo

    No full text
    Bromodomain (BRD) is an evolutionarily conserved protein–protein interaction module that is critical in gene regulation, cellular homeostasis, and epigenetics. This study aimed to conduct an identification, evolution, and expression analysis of the BRD gene family in the swamp buffalo (Bubalus bubalis). A total of 101 BRD protein sequences deduced from 22 BRD genes were found in the buffalo genome. The BRD proteins were classified into six groups based on phylogenetic relationships, conserved motifs, and conserved domains. The BRD genes were irregularly distributed in 13 chromosomes. Collinearity analysis revealed 20 BRD gene pairs that had remarkable homologous relationships between the buffalo and cattle, although no tandem or segmental duplication event was found in the buffalo BRD genes. Comparative transcriptomics using a 10x sequencing platform analysis showed that 22 BRD genes were identified in the Sertoli cells (SCs) at different developmental stages of buffalo. Further, the mRNA expression levels of bromodomain and the extraterminal (BET) family in SCs at the pubertal stage were higher than that at the prepubertal stage of buffalo. However, the SMARCA2, PHIP, BRD9, and TAF1 genes exhibited the opposite trend. The maturation process of SCs may be regulated by the BRD family members expressed differentially in SCs at different developmental stages of buffalo. In summary, our findings provide an understanding of the evolutionary, structural, and functional properties of the buffalo BRD family members, and further characterize the function of the BRD family in the maturation of SCs. It also provides a theoretical basis for further understanding in the future of the mechanism of SCs regulating spermatogenesis

    Single-cell RNA sequencing uncovers dynamic roadmap and cell-cell communication during buffalo spermatogenesis

    No full text
    Summary: Spermatogenesis carries the task of precise intergenerational transmission of genetic information from the paternal genome and involves complex developmental processes regulated by the testicular microenvironment. Studies performed mainly in mouse models have established the theoretical basis for spermatogenesis, yet the wide interspecies differences preclude direct translation of the findings, and farm animal studies are progressing slowly. More than 32,000 cells from prepubertal (3-month-old) and pubertal (24-month-old) buffalo testes were analyzed by using single-cell RNA sequencing (scRNA-seq), and dynamic gene expression roadmaps of germ and somatic cell development were generated. In addition to identifying the dynamic processes of sequential cell fate transitions, the global cell-cell communication essential to maintain regular spermatogenesis in the buffalo testicular microenvironment was uncovered. The findings provide the theoretical basis for establishing buffalo germline stem cells in vitro or culturing organoids and facilitating the expansion of superior livestock breeding
    corecore