46 research outputs found

    Characterization of a Ag+-Selective Electrode Based on Naphthalimide Derivative as Ionophore

    Get PDF
    A naphthalimide derivative has been explored as neutral ionophore for Ag+-selective electrode. Potentiometric response revealed that electrode based on the proposed ionophore with 2-nitrophenyl octyl ether as solvent in a poly (vinyl chloride) membrane matrix shows a measuring range of 1.0×10-6-1.0×10-2 M with a slope of 50.4±0.3 mV/decade. This electrode has high selectivity to Ag+ with respect to alkaline, alkaline earth and other heavy metal ions

    High power and stable P-doped yolk-shell structured Si@C anode simultaneously enhancing conductivity and Li+ diffusion kinetics

    Get PDF
    Silicon is a low price and high capacity anode material for lithium-ion batteries. The yolk-shell structure can effectively accommodate Si expansion to improve stability. However, the limited rate performance of Si anodes can’t meet people’s growing demand for high power density. Herein, the phosphorus-doped yolk-shell Si@C materials (P-doped Si@C) were prepared through carbon coating on P-doped Si/SiOx matrix to obtain high power and stable devices. Therefore, the as-prepared P-doped Si@C electrodes delivered a rapid increase in Coulombic efficiency from 74.4% to 99.6% after only 6 cycles, high capacity retention of ∼ 95% over 800 cycles at 4 A·g−1, and great rate capability (510 mAh·g−1 at 35 A·g−1). As a result, P-doped Si@C anodes paired with commercial activated carbon and LiFePO4 cathode to assemble lithium-ion capacitor (high power density of ∼ 61,080 W·kg−1 at 20 A·g−1) and lithium-ion full cell (good rate performance with 68.3 mAh·g−1 at 5 C), respectively. This work can provide an effective way to further improve power density and stability for energy storage devices

    A Whole New Comprehension about ncRNA-Encoded Peptides/Proteins in Cancers

    No full text
    It is generally considered that non-coding RNAs do not encode proteins; however, more recently, studies have shown that lncRNAs and circRNAs have ORFs which are regions that code for peptides/protein. On account of the lack of 5′cap structure, translation of circRNAs is driven by IRESs, m6A modification or through rolling amplification. An increasing body of evidence have revealed different functions and mechanisms of ncRNA-encoded peptides/proteins in cancers, including regulation of signal transduction (Wnt/β-catenin signaling, AKT-related signaling, MAPK signaling and other signaling), cellular metabolism (Glucose metabolism and Lipid metabolism), protein stability, transcriptional regulation, posttranscriptional regulation (regulation of RNA stability, mRNA splicing and translation initiation). In addition, we conclude the existing detection technologies and the potential of clinical applications in cancer therapy

    Additive-Manufactured Platinum Thin-Film Strain Gauges for Structural Microstrain Testing at Elevated Temperatures

    No full text
    This paper investigates the feasibility and performance of the fabrication of platinum high-temperature thin-film strain sensors on nickel-based alloy substrates by additive manufacturing. The insulating layer was made of a dielectric paste by screen printing process. A 1.8-micron-thick platinum film was deposited directly on the insulating layer. The four-wire resistance measurement method was used to eliminate the contact resistance of the solder joints. Comprehensive morphological and electrical characterization of the platinum thin-film strain gauge was carried out, and good static and dynamic strain responses were obtained, which confirmed that the strain gauge was suitable for in situ strain monitoring of high-temperature complex components

    ZrB2/SiCN Thin-Film Strain Gauges for In-Situ Strain Detection of Hot Components

    No full text
    The in-situ strain/stress detection of hot components in harsh environments remains a challenging task. In this study, ZrB2/SiCN thin-film strain gauges were fabricated on alumina substrates by direct writing. The effects of ZrB2 content on the electrical conductivity and strain sensitivity of ZrB2/SiCN composites were investigated, and based on these, thin film strain gauges with high electrical conductivity (1.71 S/cm) and a gauge factor of 4.8 were prepared. ZrB2/SiCN thin-film strain gauges exhibit excellent static, cyclic strain responses and resistance stability at room temperature. In order to verify the high temperature performance of the ZrB2/SiCN thin-film strain gauges, the temperature-resistance characteristic curves test, high temperature resistance stability test and cyclic strain test were conducted from 25 °C to 600 °C. ZrB2/SiCN thin-film strain gauges exhibit good resistance repeatability and stability, and highly sensitive strain response, from 25 °C to 600 °C. Therefore, ZrB2/SiCN thin-film strain gauges provide an effective approach for the measurement of in-situ strain of hot components in harsh environments

    Over-expressed long noncoding RNA HOXA11-AS promotes cell cycle progression and metastasis in gastric cancer

    No full text
    Abstract Background Long noncoding RNAs (lncRNAs) have emerged as critical regulators in a variety of human cancers, including gastric cancer (GC). However, the function and mechanisms responsible for these molecules in GC are not fully understood. In our previous study, we found that GC associated lncRNA HOXA11-AS is significantly upregulated in GC tissues. Over-expressed HOXA11-AS promotes GC cells proliferation and invasion through scaffolding the chromatin modification factors PRC2, LSD1 and DNMT1. Methods HOXA11-AS expression levels in GC cells was detected by quantitative real-time PCR (qPCR). HOXA11-AS siRNAs and overexpression vector were transfected into GC cells to down-regulate or up-regulate HOXA11-AS expression. In vitro and in vivo assays were performed to investigate the functional role of HOXA11-AS in GC cells cell cycle progression, invasion and metastasis. RIP and ChIP assays were used to determine the mechanism of HOXA11-AS’s regulation of underlying targets. Results We found that knockdown of HOXA11-AS induced GC cells G0/G1 phase arrest and suppressed GC cells migration, invasion and metastasis in vivo. Moreover, mechanistic investigation showed that HOXA11-AS could interact with WDR5 and promote β-catenin transcription, bind with EZH2 and repress P21 transcription, and induce KLF2 mRNA degradation via interacting with STAU1. Conclusions Taken together, these findings show that HOXA11-AS not only could promote GC cells migration and invasion in vitro, but also promotes GC cells metastasis in vivo, at least in part, by regulating β-catenin and KLF2
    corecore