42 research outputs found

    Time-sequential color code division multiplexing holographic display with metasurface

    Get PDF
    Color metasurface holograms are powerful and versatile platforms for modulating the amplitude, phase, polarization, and other properties of light at multiple operating wavelengths. However, the current color metasurface holography can only realize static manipulation. In this study, we propose and demonstrate a multiplexing metasurface technique combined with multiwavelength code-division multiplexing (CDM) to realize dynamic manipulation. Multicolor code references are utilized to record information within a single metasurface and increase the information capacity and security for anti-cracks. A total of 48 monochrome images consisting of pure color characters and multilevel color video frames were reconstructed in dual polarization channels of the birefringent metasurface to exhibit high information density, and a video was displayed via sequential illumination of the corresponding code patterns to verify the ability of dynamic manipulation. Our approach demonstrates significant application potential in optical data storage, optical encryption, multiwavelength-versatile diffractive optical elements, and stimulated emission depletion microscopy

    The Effect of Energy Level of Transport Layer on the Performance of Ambient Air Prepared Perovskite Solar Cell: A SCAPS-1D Simulation Study

    No full text
    The perovskite solar cell (PSC) as an emerging and promising type has been extensively studied. In this study, a model for a PSC prepared in ambient air was established by using SCAPS-1D. After that, it was further analyzed through varying the defect density of the perovskite absorber layer (Nt), the thin film thickness and energy-level matching between the electron transport layer (ETL), the perovskite absorber layer and the hole transport layer (HTL), for a better understanding of the carrier features. The Nt varied from 1.000 × 1011 to 1.000 × 1017 cm−3. The performance of the solar cell is promoted with improved Nt. When Nt is at 1.000 × 1015 cm−3, the carrier diffusion length reaches μm, and the carrier lifetime comes to 200 nm. The thickness of the absorber layer was changed from 200 to 600 nm. It is shown that the absorber layer could be prepared thinner for reducing carrier recombination when at high Nt. The thickness effect of ETL and HTL is weakened, since Nt dominates the solar cell performance. The effect of the affinity of ETL (3.4–4.3 eV) and HTL (2.0–2.7 eV), together with three energy-level matching situations “ETL(4.2)+HTL(2.5)”, “ETL(4.0)+HTL(2.2)” and “ETL(4.0)+HTL(2.5)” on the performance of the solar cell were analyzed. It was found that the HTL with valence band 0.05 eV lower than that of the perovskite absorber layer could have a blocking effect that reduced carrier recombination. The effect of energy-level matching becomes more important with improved Nt. Energy-level matching between the ETL and perovskite absorber layer turns out counterbalance characteristic on Jsc and Voc, and the “ETL(4.0)+HTL(2.5)” case can result in solar cell with Jsc of 27.58 mA/cm2, Voc of 1.0713 V, FF of 66.02% and efficiency of 19.51%. The findings would be very useful for fabricating high-efficiency and low-cost PSC by a large-scale ambient air route

    The Effect of Energy Level of Transport Layer on the Performance of Ambient Air Prepared Perovskite Solar Cell: A SCAPS-1D Simulation Study

    No full text
    The perovskite solar cell (PSC) as an emerging and promising type has been extensively studied. In this study, a model for a PSC prepared in ambient air was established by using SCAPS-1D. After that, it was further analyzed through varying the defect density of the perovskite absorber layer (Nt), the thin film thickness and energy-level matching between the electron transport layer (ETL), the perovskite absorber layer and the hole transport layer (HTL), for a better understanding of the carrier features. The Nt varied from 1.000 × 1011 to 1.000 × 1017 cm−3. The performance of the solar cell is promoted with improved Nt. When Nt is at 1.000 × 1015 cm−3, the carrier diffusion length reaches μm, and the carrier lifetime comes to 200 nm. The thickness of the absorber layer was changed from 200 to 600 nm. It is shown that the absorber layer could be prepared thinner for reducing carrier recombination when at high Nt. The thickness effect of ETL and HTL is weakened, since Nt dominates the solar cell performance. The effect of the affinity of ETL (3.4–4.3 eV) and HTL (2.0–2.7 eV), together with three energy-level matching situations “ETL(4.2)+HTL(2.5)”, “ETL(4.0)+HTL(2.2)” and “ETL(4.0)+HTL(2.5)” on the performance of the solar cell were analyzed. It was found that the HTL with valence band 0.05 eV lower than that of the perovskite absorber layer could have a blocking effect that reduced carrier recombination. The effect of energy-level matching becomes more important with improved Nt. Energy-level matching between the ETL and perovskite absorber layer turns out counterbalance characteristic on Jsc and Voc, and the “ETL(4.0)+HTL(2.5)” case can result in solar cell with Jsc of 27.58 mA/cm2, Voc of 1.0713 V, FF of 66.02% and efficiency of 19.51%. The findings would be very useful for fabricating high-efficiency and low-cost PSC by a large-scale ambient air route

    Fabrication of Cu<sub>2</sub>ZnSnS<sub>4</sub> Thin Films Based on Facile Nanocrystals-Printing Approach with Rapid Thermal Annealing (RTA) Process

    No full text
    In the current study, Cu2ZnSnS4 (CZTS) thin film was successfully fabricated by the facile nanocrystals (NCs)-printing approach combined with rapid thermal annealing (RTA) process. Firstly, the CZTS NCs were synthesized by a thermal solution method and the possible formation mechanism was analyzed briefly. Then the influences of RTA toleration temperature and duration time on the various properties of as-printed thin films were examined via XRD, Raman, FE-SEM, UV-vis-IR spectroscopy, EDS and XPS treatments in detail. As observed, the RTA factors of temperature and time had significant impacts on the structure and morphology of as-prepared thin films, while there were no obvious effects on the band gap energy in studied conditions. The results showed that the obtained thin film at optimal RTA conditions of (600 &#176;C, 20 min) featured a kesterite structure in pure phase and an irregular morphology consisting of large grains. Moreover, the satisfactory composition of a Cu-poor, Zn-rich state and an ideal band gap energy of 1.4 eV suggests that as-fabricated CZTS thin film is a suitable light-absorbing layer candidate for the application in thin film solar cells

    Energy Storage Application Technology and Operation Model on the Customer Side in China and Abroad

    No full text
    As a superior flexible resource in a new power system with new energy as the main body, customer-side energy storage has great potential for future development. It expounds the application technology and operation model of customer-side energy storage in the United States and Germany, analyzes the operation model of china's customer-side energy storage and calculates internal rates of return of general commercial and industrial customers with a unitary tariff and large industrial customers with two-part tariff, and puts forward suggestions to promote the development of china’s customer-side energy storage

    Research on the influence of the VREs’ penetration on the capacity of transmission lines

    No full text
    Under the trend of global carbon emission reduction and energy transformation, variable renewable energies (VREs mainly wind power and solar) will develop rapidly. Many countries have put forward ambitious VREs development plans, and a high penetration of VREs will have a significant impact on the grid. This paper focuses on the analysis of the influence of the VREs’ penetration on the capacity of transmission lines, establishes an analysis model based on mixed integer optimization and power transfer distribution factors (FTDFs), and uses this model to carry out a quantitative study on a typical system. Through the analysis of the research results, as the penetration rate of VREs increases, the transmission power of the transmission lines and the investment cost of the transmission lines will increase, and the line utilization rate will decrease. Utility companies should pay attention to the impact of future development of VREs on grid investment costs and recovery

    Murine gamma-herpesvirus 68 hijacks MAVS and IKKbeta to initiate lytic replication.

    Get PDF
    Upon viral infection, the mitochondrial antiviral signaling (MAVS)-IKKbeta pathway is activated to restrict viral replication. Manipulation of immune signaling events by pathogens has been an outstanding theme of host-pathogen interaction. Here we report that the loss of MAVS or IKKbeta impaired the lytic replication of gamma-herpesvirus 68 (gammaHV68), a model herpesvirus for human Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. gammaHV68 infection activated IKKbeta in a MAVS-dependent manner; however, IKKbeta phosphorylated and promoted the transcriptional activation of the gammaHV68 replication and transcription activator (RTA). Mutational analyses identified IKKbeta phosphorylation sites, through which RTA-mediated transcription was increased by IKKbeta, within the transactivation domain of RTA. Moreover, the lytic replication of recombinant gammaHV68 carrying mutations within the IKKbeta phosphorylation sites was greatly impaired. These findings support the conclusion that gammaHV68 hijacks the antiviral MAVS-IKKbeta pathway to promote viral transcription and lytic infection, representing an example whereby viral replication is coupled to host immune activation

    COX5B Regulates MAVS-mediated Antiviral Signaling through Interaction with ATG5 and Repressing ROS Production

    Get PDF
    <div><p>Innate antiviral immunity is the first line of the host defense system that rapidly detects invading viruses. Mitochondria function as platforms for innate antiviral signal transduction in mammals through the adaptor protein, MAVS. Excessive activation of MAVS-mediated antiviral signaling leads to dysfunction of mitochondria and cell apoptosis that likely causes the pathogenesis of autoimmunity. However, the mechanism of how MAVS is regulated at mitochondria remains unknown. Here we show that the Cytochrome c Oxidase (CcO) complex subunit COX5B physically interacts with MAVS and negatively regulates the MAVS-mediated antiviral pathway. Mechanistically, we find that while activation of MAVS leads to increased ROS production and COX5B expression, COX5B down-regulated MAVS signaling by repressing ROS production. Importantly, our study reveals that COX5B coordinates with the autophagy pathway to control MAVS aggregation, thereby balancing the antiviral signaling activity. Thus, our study provides novel insights into the link between mitochondrial electron transport system and the autophagy pathway in regulating innate antiviral immunity.</p> </div

    PTK2B promotes TBK1 and STING oligomerization and enhances the STING-TBK1 signaling

    No full text
    Abstract TANK-binding kinase 1 (TBK1) is a key kinase in regulating antiviral innate immune responses. While the oligomerization of TBK1 is critical for its full activation, the molecular mechanism of how TBK1 forms oligomers remains unclear. Here, we show that protein tyrosine kinase 2 beta (PTK2B) acts as a TBK1-interacting protein and regulates TBK1 oligomerization. Functional assays reveal that PTK2B depletion reduces antiviral signaling in mouse embryonic fibroblasts, macrophages and dendritic cells, and genetic experiments show that Ptk2b-deficient mice are more susceptible to viral infection than control mice. Mechanistically, we demonstrate that PTK2B directly phosphorylates residue Tyr591 of TBK1, which increases TBK1 oligomerization and activation. In addition, we find that PTK2B also interacts with the stimulator of interferon genes (STING) and can promote its oligomerization in a kinase-independent manner. Collectively, PTK2B enhances the oligomerization of TBK1 and STING via different mechanisms, subsequently regulating STING-TBK1 activation to ensure efficient antiviral innate immune responses
    corecore