104 research outputs found

    The association between XPC Lys939Gln gene polymorphism and urinary bladder cancer susceptibility: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Numerous epidemiological studies have been conducted to explore the association between the Lys939Gln polymorphism of Xeroderma pigmentosum group C (XPC) gene and urinary bladder cancer susceptibility. However, the results remain inconclusive. In order to derive a more precise estimation of this relationship, a large and update meta-analysis was performed in this study. METHODS: A comprehensive search was conducted through researching MEDLINE, EMBASE, PubMed, Web of Science, China Biomedical Literature database (CBM) and China National Knowledge Infrastructure (CNKI) databases before June 2013. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to estimate the strength of the association. RESULTS: A total of 12 studies with 4828 cases and 4890 controls for evaluating the XPC Lys939Gln polymorphism and urinary bladder cancer were included. Overall, there was significant associations between the XPC Lys939Gln polymorphism and urinary bladder cancer risk were found for homozygous model (OR = 1.352, 95% CL = 1.088-1.681), heterozygous model (OR = 1.354, 95% CL = 1.085-1.688), and allele comparison (OR = 1.109, 95% CL = 1.013-1.214). In subgroup analysis by ethnicity and source of controls, there were still significant associations detected in some genetic models. CONCLUSION: Our meta-analysis suggested that the XPC Lys939Gln polymorphism contributed to the risk of urinary bladder cancer. VIRTUAL SLIDES: The virtual slide(s) for this article can be found here:

    On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation.

    Get PDF
    Peroxy acetyl nitrate (PAN) is a key component of photochemical smog and plays an important role in atmospheric chemistry. Though it has been known that PAN is produced via reactions of nitrogen oxides (NOx) with some volatile organic compounds (VOCs), it is difficult to quantify the contributions of individual precursor species. Here we use an explicit photochemical model--Master Chemical Mechanism (MCM) model--to dissect PAN formation and identify principal precursors, by analyzing measurements made in Beijing in summer 2008. PAN production was sensitive to both NOx and VOCs. Isoprene was the predominant VOC precursor at suburb with biogenic impact, whilst anthropogenic hydrocarbons dominated at downtown. PAN production was attributable to a relatively small class of compounds including NOx, xylenes, trimethylbenzenes, trans/cis-2-butenes, toluene, and propene. MCM can advance understanding of PAN photochemistry to a species level, and provide more relevant recommendations for mitigating photochemical pollution in large cities

    Polymorphisms of XRCC4 are involved in reduced colorectal cancer risk in Chinese schizophrenia patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic factors related to the regulation of apoptosis in schizophrenia patients may be involved in a reduced vulnerability to cancer. XRCC4 is one of the potential candidate genes associated with schizophrenia which might induce colorectal cancer resistance.</p> <p>Methods</p> <p>To examine the genetic association between colorectal cancer and schizophrenia, we analyzed five SNPs (rs6452526, rs2662238, rs963248, rs35268, rs2386275) covering ~205.7 kb in the region of XRCC4.</p> <p>Results</p> <p>We observed that two of the five genetic polymorphisms showed statistically significant differences between 312 colorectal cancer subjects without schizophrenia and 270 schizophrenia subjects (rs6452536, p = 0.004, OR 0.61, 95% CI 0.44-0.86; rs35268, p = 0.028, OR 1.54, 95% CI 1.05-2.26). Moreover, the haplotype which combined all five markers was the most significant, giving a global <it>p </it>= 0.0005.</p> <p>Conclusions</p> <p>Our data firstly indicate that XRCC4 may be a potential protective gene towards schizophrenia, conferring reduced susceptibility to colorectal cancer in the Han Chinese population.</p

    Quantum Chemical and Kinetic Study on Polychlorinated Naphthalene Formation from 3-Chlorophenol Precursor

    No full text
    Polychlorinated naphthalenes (PCNs) are the smallest chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and are often called dioxin-like compounds. Chlorophenols (CPs) are important precursors of PCN formation. In this paper, mechanistic and kinetic studies on the homogeneous gas-phase formation mechanism of PCNs from 3-CP precursor were investigated theoretically by using the density functional theory (DFT) method and canonical variational transition-state theory (CVT) with small curvature tunneling contribution (SCT). The reaction priority of different PCN formation pathways were disscussed. The rate constants of crucial elementary steps were deduced over a wide temperature range of 600−1200 K. The mechanisms were compared with the experimental observation and our previous works on the PCN formation from 2-CP and 4-CP. This study shows that pathways ended with Cl elimination are favored over those ended with H elimination from the 3-CP precursor. The formation potential of MCN is larger than that of DCN. The chlorine substitution pattern of monochlorophenols has a significant effect on isomer patterns and formation potential of PCN products. The results can be input into the environmental PCN controlling and prediction models as detailed parameters, which can be used to confirm the formation routes of PCNs, reduce PCN emission and establish PCN controlling strategies

    Formation of Chlorotriophenoxy Radicals from Complete Series Reactions of Chlorotriophenols with H and OH Radicals

    No full text
    The chlorothiophenoxy radicals (CTPRs) are key intermediate species in the formation of polychlorinated dibenzothiophenes/thianthrenes (PCDT/TAs). In this work, the formation of CTPRs from the complete series reactions of 19 chlorothiophenol (CTP) congeners with H and OH radicals were investigated theoretically by using the density functional theory (DFT) method. The profiles of the potential energy surface were constructed at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants were evaluated by the canonical variational transition-state (CVT) theory with the small curvature tunneling (SCT) contribution at 600–1200 K. The present study indicates that the structural parameters, thermal data, and rate constants as well as the formation potential of CTPRs from CTPs are strongly dominated by the chlorine substitution at the ortho-position of CTPs. Comparison with the study of formation of chlorophenoxy radicals (CPRs) from chlorophenols (CPs) clearly shows that the thiophenoxyl-hydrogen abstraction from CTPs by H is more efficient than the phenoxyl-hydrogen abstraction from CPs by H, whereas the thiophenoxyl-hydrogen abstraction from CTPs by OH is less impactful than the phenoxyl-hydrogen abstraction from CPs by OH. Reactions of CTPs with H can occur more readily than that of CTPs with OH, which is opposite to the reactivity comparison of CPs with H and OH
    corecore