12 research outputs found

    Optimal Design of Three-Dimensional Circular-to-Rectangular Transition Nozzle Based on Data Dimensionality Reduction

    No full text
    The parametric representation and aerodynamic shape optimization of a three-dimensional circular-to-rectangular transition nozzle designed and built using control lines distributed along the circumferential direction were investigated in this study. A surrogate model based on class/shape transformation, principal component analysis and radial basis neural network was proposed with fewer design parameters for parametric representation and performance parameter prediction of the three-dimensional circular-to-rectangular transition nozzle. The surrogate model was combined with Non-dominated Sorting Genetic Algorithm-II to optimize the aerodynamic shape of the nozzle. The results showed that the surrogate model effectively achieved the parametric representation and aerodynamic shape optimization of the three-dimensional circular-to-rectangular transition nozzle. The geometric dimensions and performance parameters of the parametric reconstructed model were comparable to that of the initial model, implying that they can meet the needs of optimal design. The axial thrust coefficient and lift of the optimized nozzle were increased by approximately 0.742% and 15.707%, respectively

    Research progress on factors affecting oxygen corrosion and countermeasures in oilfield development

    No full text
    Water injection, air injection, air foam injection, and in-situ combustion technology are used step by step in the later period of oilfield. Oxygen corrosion caused by different development methods has become a problem that could not be ignored. In this paper, the mechanism of oxygen corrosion, the influencing factors of oxygen corrosion and the new progress of oxygen corrosion countermeasures in recent years are systematically analyzed. Anticorrosion methods for different development modes are put forward. The direction of further research on oxygen corrosion in oilfield development is proposed: â—‹1Prediction and control of corrosion in oxygen environment need to be further studied to better guide corrosion protection in high temperature injection and production of oil and gas wells. â—‹2The research of anticorrosive coating materials and corrosion inhibitor technology needs to be further developed in the direction of safety and environment-friendly

    Comparative Transcriptome Analysis in Eggplant Reveals Selection Trends during Eggplant Domestication

    No full text
    Eggplant (Solanum melongena L.) is an economically and nutritionally important fruit crop of the Solanaceae family, which was domesticated in India and southern China. However, the genome regions subjected to selective sweeps in eggplant remain unknown. In the present study, we performed comparative transcriptome analysis of cultivated and wild eggplant species with emphasis on the selection pattern during domestication. In total, 44,073 (S. sisymbriifolium) to 58,677 (S. melongena cultivar S58) unigenes were generated for the six eggplant accessions with total lengths of 36.6-46 Mb. The orthologous genes were assessed using the ratio of nonsynonymous (Ka) to synonymous (Ks) nucleotide substitutions to characterize selective patterns during eggplant domestication. We identified 19 genes under positive selection across the phylogeny that were classified into four groups. The gene (OG12205) under positive selection was possibly associated with fruit-related traits in eggplant, which may have resulted from human manipulation. Eight positive selected genes were potentially involved in stress tolerance or disease resistance, suggesting that environmental changes and biotic stresses were important selective pressures in eggplant domestication. Taken together, our results shed light on the effects of artificial and natural selection on the transcriptomes of eggplant and its wild relatives. Identification of the selected genes will facilitate the understanding of genetic architecture of domesticated-related traits and provide resources for resistant breeding in eggplant

    Identification of the potential active site of the septal peptidoglycan polymerase FtsW

    Get PDF
    SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors

    Identification of the potential active site of the septal peptidoglycan polymerase FtsW

    Get PDF
    SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors

    Chloro-benquinone Modified on Graphene Oxide as Metal-free Catalyst: Strong Promotion of Hydroxyl Radical and Generation of Ultra-Small Graphene Oxide

    No full text
    Carbon-based metal-free catalyst has attracted more and more attention. It is a big challenge to improve catalytic activity of metal-free catalyst for decomposition of H2O2 to produce hydroxyl radical (HO center dot). Here, we report chloro-benquinone (TCBQ) modified on graphene oxide (GO) as metal-free catalyst for strong promotion of HO center dot. By the incorporation of GO, the HO center dot production by H2O2 and TCBQ is significantly promoted. Based on density functional theory, TCBQ modified GO (GO-TCBQ) is more prone to be nucleophilic attacked by H2O2 to yield HO center dot via electron transfer acceleration. Furthermore, the generated HO center dot can cut GO nanosheets into uniform ultra-small graphene oxide (USGO) through the cleavage of epoxy and C-C bonds. Interestingly, the damaged GO and in situ formed GO fragments can further enhance decomposition of H2O2 to produce HO center dot. Different from other catalytic processes, the GO-TCBQ metal-free catalysis process can be enhanced by GO itself, producing more HO center dot, and uniform USGO also can be generated. Thus, the metal free catalysis will be considered a fabrication method for uniform USGO, and may be extended to other fields including detoxifying organic pollutants and the application as disinfectants.</p

    Identification of the potential active site of the septal peptidoglycan polymerase FtsW.

    Get PDF
    SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors

    Identification of the potential active site of the septal peptidoglycan polymerase FtsW

    No full text
    SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors

    BSCTV C2 Attenuates the Degradation of SAMDC1 to Suppress DNA Methylation-Mediated Gene Silencing in Arabidopsis[W][OA]

    No full text
    This work shows that a geminivirus-encoded silencing suppressor C2 interacts with a plant host cellular component SAMDC1 and attenuates its fast turnover mediated by the 26S proteasome. As a result, it interferes with the host plant’s DNA methylation-related gene silencing mechanism and facilitates geminivirus infection
    corecore