5 research outputs found

    An Iodine-Free and Directed-Disulfide-Bond-Forming Route to Insulin Analogues

    No full text
    An iodine-free synthetic route to insulin analogues has been established via a directed disulfide bond formation strategy. This method is completely compatible with oxidation-sensitive residues. The key step is constructing the third disulfide bond via a novel procedure involving phenyl­acetyl­amino­methyl group (Phacm), immobilized Penicillin G Acylase, and Ellman’s reagent. We expect that this method could be broadly utilized for synthesizing insulin-like and other cysteine-rich peptides, in particular, where oxidation-sensitive residues are present in the sequence

    Method for Characterization of PEGylated Bioproducts in Biological Matrixes

    No full text
    PEGylation of peptides and proteins has been widely used to enhance stability and reduce immunogenicity of biotherapeutics. Characterizing the degradation of these PEGylated products in biological fluids can yield essential information to support pharmacokinetic evaluations and provide clues about their <i>in vivo</i> properties useful for further molecular optimization. In this paper, we describe a novel and uncomplicated approach to characterize PEGylated peptides or proteins and their related degradation products in biological matrixes. The method involves direct liquid chromatography/mass spectrometry (LC/MS) analysis of animal sera containing low nanograms to low micrograms per milliliter of PEGylated product with or without an acetonitrile precipitation sample treatment. Applying the methodology to analyze the model PEGylated peptides, 20K PEGylated-Pancreatic Polypeptide analogue (PPA) and 20K PEGylated-glucagon, we elucidated the decomposition pathways occurring in animal sera. The data provided direct evidence of cleavages within the peptide backbone. The identified degradation products were unambiguously confirmed by tandem mass spectrometry with high-energy C-trap dissociation (HCD) analysis, followed with in-source fragmentation. Additional spiking studies demonstrated nearly full recovery of PEGylated products, linear detection when the spiked concentration of PEGylated product was ≤1000 ng/mL, and a low ng/mL limit of quantitation (LOQ)

    Additional file 4: of Telomerase regulation by the long non-coding RNA H19 in human acute promyelocytic leukemia cells

    No full text
    Figure S2. Validation of the anti-hTERT antibody specificity. Immunoprecipitation of the hTERT/hTR complex was performed using an anti-hTERT antibody (Rockland) or pre-immune IgG as described in Material and Methods. The presence of hTR was detected by quantitative RT-PCR. Results were expressed as means +/− SEM. t-test *p < 0.05. (PDF 90 kb

    Additional file 2: of Telomerase regulation by the long non-coding RNA H19 in human acute promyelocytic leukemia cells

    No full text
    Table S2. Data analysis of the microarray experiments. Lists of genes with significant differential expression levels (fold changes of ±2 fold; p < 0.01). Some details correspond to the results displayed in Venn diagrams presented in Fig. 1c of the main text. (XLSX 66 kb

    Table_1_Methylprednisolone is related to lower incidence of postoperative bleeding after flow diverter treatment for unruptured intracranial aneurysm.DOCX

    No full text
    Background and objectivesRegarding the anti-inflammatory effect, methylprednisolone is a candidate to prevent patients with unruptured intracranial aneurysms (UIAs) from postoperative bleeding (PB) after flow diverter (FD) treatment. This study aimed to investigate whether methylprednisolone is related to a lower incidence of PB after FD treatment for UIAs.MethodsThis study retrospectively reviewed UIA patients receiving FD treatment between October 2015 and July 2021. All patients were observed until 72  h after FD treatment. The patients receiving methylprednisolone (80  mg, bid, for at least 24 h) were considered as standard methylprednisolone treatment (SMT) users, otherwise as non-SMT users. The primary endpoint indicated the occurrence of PB, including subarachnoid hemorrhage, intracerebral hemorrhage, and ventricular bleeding, within 72 h after FD treatment. This study compared the incidence of PB between SMT users and non-SMT users and investigated the protective effect of SMT on PB after FD treatment using the Cox regression model. Finally, after controlling the potential factors related to PB, we performed subgroup analysis to further confirm the protective effect of SMT on PB.ResultsThis study finally included 262 UIA patients receiving FD treatment. PB occurred in 11 patients (4.2%), and 116 patients (44.3%) received SMT postoperatively. The median time from the end of surgery to PB was 12.3 h (range: 0.5–48.0 h). SMT users had a lower incidence of PB comparing with non-SMT users (1/116, 0.9% vs. 10/146, 6.8%, respectively; p = 0.017). The multivariate Cox analysis demonstrated that SMT users (HR, 0.12 [95%CI, 0.02–0.94], p = 0.044) had a lower risk of PB postoperatively. After controlling the potential factors related to PB (i.e., gender, irregular shape, surgical methods [FD and FD + coil] and UIA sizes), the patients receiving SMT still had a lower cumulative incidence of PB, comparing with patients receiving non-SMT (all p ConclusionSMT was correlated with the lower incidence of PB for patients receiving FD treatment and may be a potential method to prevent PB after the FD treatment.</p
    corecore