26 research outputs found

    Zonally Robust Decentralized Optimization for Global Energy Interconnection:Case Study on Northeast Asian Countries

    Get PDF

    Duality-Free Decomposition Based Data-Driven Stochastic Security-Constrained Unit Commitment

    Get PDF

    Bi-level Programming Based Optimal Strategy to LSEs with Demand Response Bids

    Get PDF
    With the increasing demand-side participation in electricity market, as a profit-seeking market participant, load-serving entities (LSEs) have been trying to apply demand response (DR) programs to induce the demand elasticity to further their profit. However, due to the different preference of DRs, it is difficult for LSEs to generate the optimal strategic bidding strategy considering DR in the ISO/RTO’s market. Therefore, this paper proposed a bi-level optimization model with the consideration of demand response bidding to maximize the total profit of LSEs: 1) conceptually, different from previous related works, the consumers participate DR through setting their bidding prices to LSEs with respect to their own preference and LSEs should determine the optimal reward value of DR as well as the amount of demanded electricity; and 2) technically, an original method has been implemented to solve the bi-level optimization model. The closed form of shadow price function with respect to the total load demand is derived to reduce the complexity of the proposed bi-level model. Hence, the proposed model is converted to a mixed integer second order cone programming and able to achieve the global optimality. It needs to be note that the closed form of shadow price introduced in this paper can also be applied to other bi-level programming models. Moreover, case studies have been performed to demonstrate the validity of the proposed method: 1) the proposed method to obtain the closed form of real-time price is verified on a 9-bus system; 2) 118-bus test system with three demand response participants is tested to show that by the proposed method, LSE can benefit from the DRs under various circumstance

    AutoPCF: Efficient Product Carbon Footprint Accounting with Large Language Models

    Full text link
    The product carbon footprint (PCF) is crucial for decarbonizing the supply chain, as it measures the direct and indirect greenhouse gas emissions caused by all activities during the product's life cycle. However, PCF accounting often requires expert knowledge and significant time to construct life cycle models. In this study, we test and compare the emergent ability of five large language models (LLMs) in modeling the 'cradle-to-gate' life cycles of products and generating the inventory data of inputs and outputs, revealing their limitations as a generalized PCF knowledge database. By utilizing LLMs, we propose an automatic AI-driven PCF accounting framework, called AutoPCF, which also applies deep learning algorithms to automatically match calculation parameters, and ultimately calculate the PCF. The results of estimating the carbon footprint for three case products using the AutoPCF framework demonstrate its potential in achieving automatic modeling and estimation of PCF with a large reduction in modeling time from days to minutes

    CT-based radiomics models predict spontaneous intracerebral hemorrhage expansion and are comparable with CT angiography spot sign

    Get PDF
    Background and purposeThis study aimed to investigate the efficacy of radiomics, based on non-contrast computed tomography (NCCT) and computed tomography angiography (CTA) images, in predicting early hematoma expansion (HE) in patients with spontaneous intracerebral hemorrhage (SICH). Additionally, the predictive performance of these models was compared with that of the established CTA spot sign.Materials and methodsA retrospective analysis was conducted using CT images from 182 patients with SICH. Data from the patients were divided into a training set (145 cases) and a testing set (37 cases) using random stratified sampling. Two radiomics models were constructed by combining quantitative features extracted from NCCT images (the NCCT model) and CTA images (the CTA model) using a logistic regression (LR) classifier. Additionally, a univariate LR model based on the CTA spot sign (the spot sign model) was established. The predictive performance of the two radiomics models and the spot sign model was compared according to the area under the receiver operating characteristic (ROC) curve (AUC).ResultsFor the training set, the AUCs of the NCCT, CTA, and spot sign models were 0.938, 0.904, and 0.726, respectively. Both the NCCT and CTA models demonstrated superior predictive performance compared to the spot sign model (all P < 0.001), with the performance of the two radiomics models being comparable (P = 0.068). For the testing set, the AUCs of the NCCT, CTA, and spot sign models were 0.925, 0.873, and 0.720, respectively, with only the NCCT model exhibiting significantly greater predictive value than the spot sign model (P = 0.041).ConclusionRadiomics models based on NCCT and CTA images effectively predicted HE in patients with SICH. The predictive performances of the NCCT and CTA models were similar, with the NCCT model outperforming the spot sign model. These findings suggest that this approach has the potential to reduce the need for CTA examinations, thereby reducing radiation exposure and the use of contrast agents in future practice for the purpose of predicting hematoma expansion
    corecore