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3Department of Radiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China, 4Precision

Health Institution, GE Healthcare, Shanghai, China

Background and purpose: This study aimed to investigate the e�cacy

of radiomics, based on non-contrast computed tomography (NCCT) and

computed tomography angiography (CTA) images, in predicting early hematoma

expansion (HE) in patients with spontaneous intracerebral hemorrhage (SICH).

Additionally, the predictive performance of these models was compared with

that of the established CTA spot sign.

Materials andmethods: A retrospective analysis was conducted usingCT images

from 182 patients with SICH. Data from the patients were divided into a training

set (145 cases) and a testing set (37 cases) using random stratified sampling.

Two radiomics models were constructed by combining quantitative features

extracted from NCCT images (the NCCT model) and CTA images (the CTA

model) using a logistic regression (LR) classifier. Additionally, a univariate LR

model based on the CTA spot sign (the spot sign model) was established. The

predictive performance of the two radiomics models and the spot sign model

was compared according to the area under the receiver operating characteristic

(ROC) curve (AUC).

Results: For the training set, the AUCs of the NCCT, CTA, and spot sign

models were 0.938, 0.904, and 0.726, respectively. Both the NCCT and CTA

models demonstrated superior predictive performance compared to the spot

sign model (all P < 0.001), with the performance of the two radiomics models

being comparable (P = 0.068). For the testing set, the AUCs of the NCCT, CTA,

and spot sign models were 0.925, 0.873, and 0.720, respectively, with only the

NCCT model exhibiting significantly greater predictive value than the spot sign

model (P = 0.041).

Conclusion: Radiomics models based on NCCT and CTA images e�ectively

predicted HE in patients with SICH. The predictive performances of the NCCT

and CTA models were similar, with the NCCT model outperforming the spot

sign model. These findings suggest that this approach has the potential to

reduce the need for CTA examinations, thereby reducing radiation exposure

and the use of contrast agents in future practice for the purpose of predicting

hematoma expansion.

KEYWORDS
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Introduction

Spontaneous intracerebral hemorrhage (SICH) is a prevalent

subtype of stroke, accounting for∼10%−15% of all strokes. Unlike

ischemic stroke, SICH leads to more severe disability and higher

mortality rates, with nearly 40% mortality within the first month

(1). Early hematoma expansion (HE) occurs in ∼30% of SICH

patients and is strongly associated with unfavorable outcomes (2).

Studies have shown that, for every 1mL increase in bleeding,

the risk of death or disability increases by ∼5% (3). Therefore,

the accurate identification of patients at risk of HE is crucial in

clinical settings.

Several imaging markers have been proven to serve as reliable

predictors for determining HE: these include an irregular shape,

the island sign, hypodensities within the hematoma, the blend

sign, the black hole sign, and the swirl sign on non-contrast

computed tomography (NCCT), as well as the spot sign on

computed tomography angiography (CTA) (4–10). In particular,

the CTA spot sign has been widely adopted as a benchmark for

prediction of HE in clinical practice. However, these markers

are susceptible to subjective interpretation influenced by the

researcher’s experience, and many lack sufficient sensitivity. For

example, despite the promising performance of the CTA spot sign,

the pooled sensitivity values reported in three previous meta-

analyses are only 0.53, 0.62, and 0.57 (11–13). In other words, these

predictors are suboptimal for accurately predicting HE. Therefore,

in this study, we aimed to explore a more sensitive, objective, and

convenient approach.

Radiomics, an emerging field of research, utilizes data

mining algorithms to extract quantitative features from

medical images (14). It has garnered significant attention

in oncological investigations (15, 16). Recently, researchers

have explored the potential of radiomics in predicting the

expansion of intracerebral hemorrhage (17–19). Their studies

have demonstrated the effectiveness of radiomics models in

predicting HE, surpassing conventional radiological and clinical

models. However, these previous studies have focused solely

on NCCT data. In clinical practice, multimodal CT images,

such as CTA images, are available for patient evaluation. CTA

images not only reveal hidden vascular information within the

hemorrhage but also enhance changes in the image construct.

Considering these advantages, we hypothesized that a radiomics

model based on CTA images would outperform models based

on other image types. Therefore, in this study, we aimed to

develop separate radiomics models based on NCCT and CTA

images to predict HE. Additionally, we aimed to evaluate their

predictive performance by comparing them with the established

spot sign.

Abbreviations: AUC, area under the curve; CTA, computed tomography

angiography; HE, hematoma expansion; ICC, intraclass correlation

coe�cient; LASSO, least absolute shrinkage and selection operation;

LR, logistic regression; NCCT, non-contrast computed tomography;

ROC, receiver operating characteristic; SICH, spontaneous intracerebral

hemorrhage; VOI, volume of interest.

FIGURE 1

Flowchart of patient enrolment and exclusion criteria.

Materials and methods

Patients

This retrospective study enrolled patients with SICH who

were admitted to Northern Jiangsu People’s Hospital via the

emergency department between December 2015 and December

2020. Patients eligible to participate were those with SICH aged 18

years or older who underwent initial NCCT followed by cranial

CTA within 6 h of symptom onset and follow-up NCCT within

36 h. Patients with traumatic brain injury, secondary intracerebral

hemorrhage resulting from an aneurysm, vascular malformation,

brain tumor, or hemorrhagic transformation of infarction, as well

as those with infratentorial hematoma or primary intraventricular

hemorrhage, those who underwent surgical intervention before

follow-up NCCT, and those with CT images with artifact, were

excluded from the study. A flowchart illustrating the patient

selection process is shown in Figure 1.

This retrospective study was approved by the hospital’s ethics

committee, and the requirement for informed consent was waived.

Image acquisition

Image acquisition was performed using a 64-row, 128-slice

scanner (Optima CT660, GE Healthcare, Chicago, IL, USA) and

an 80-row, 160-slice scanner (uCT 780, UIH, Shanghai, China).

The scanning protocols for the Optima CT660 scanner consisted

of a tube voltage of 120kV, automatic tube current, a collimation

width of 64mm, a scanning field of 250mm, and slice thickness

and interslice spacing of 5mm and 0.625mm for NCCT and CTA,

respectively. For the uCT 780 scanner, the scanning protocols

consisted of a tube voltage of 120kV, automatic tube current, a

collimation width of 40mm, a scanning field of 300mm, and slice

thickness and interslice spacing of 5mm and 0.5mm for NCCT and

CTA, respectively. The scanning range extended from the base to

the top of the skull. Test bolus technology was utilized to determine
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the appropriate CTA acquisition time. During CTA, 50–70mL of

iodixanol (Xiansu, Yangtze River Pharmaceutical Co, Ltd, Jiangsu,

China; 320mg I/mL) was intravenously injected at a rate of 5

mL/s via a power injector through the antecubital vein. All images

were transferred to the post-processing workstation AW4.7 (GE

Healthcare, USA).

Radiological analysis

Automated hematoma recognition was performed on initial

and follow-up CT images using the Stroke VCAR software package

on the AW4.7 workstation; this assisted in segmenting hematoma

areas and measuring hematoma volume. In this study, HE was

defined as an increase in hematoma volume of ≥ 6mL or

≥ 33% on follow-up CT compared to initial CT (20). Based

on this criterion, all patients were categorized as either HE or

non-HE. For SICH patients with intraventricular hemorrhage

extension, the classification was independently verified by two

physicians, one with 3 years and the other with 15 years of

experience in radiodiagnosis, and their determinations were found

to be consistent.

To evaluate the presence of the CTA spot sign in CTA

images, two other neuroimaging diagnostic physicians, one with

2 years and the other with 20 years of experience, conducted

independent assessments. Any discrepancies were resolved through

joint discussion to reach a consensus. Both readers were blinded to

all clinical information. Subsequently, a binary logistic regression

(LR) model for the CTA spot sign (the spot sign model) was

developed. The assessment included evaluating the location, shape,

intraventricular hemorrhage extension, swirl sign, blend sign,

black hole sign, and island sign, all of which were documented.

Hematoma locations were classified as lobar or deep (involving the

basal ganglia and/or thalamus) based on the location of the main

body of the hematoma. The shape of the hematoma was recorded

as either irregular or regular (5).

Radiomics analysis

Lesion segmentation
To mitigate the influence of varying slice thickness and

interslice spacing across different CT scanners, as well as the

distinctions between CTA and NCCT images, all original CTA

images were reconstructed with a consistent slice thickness and

interslice spacing of 5mm, matching that of the NCCT images.

Subsequently, both the NCCT and the reconstructed CTA images

for the enrolled patients were exported in DICOM format and

transferred to the DARWIN intelligent research platform (Yizhun

Medical AI technology, Beijing, China, https://arxiv.org/abs/2009.

00908). A volume of interest (VOI) for the hematoma wasmanually

delineated and segmented layer by layer in the NCCT images,

following the boundary of the hematoma from top to bottom.

This delineation was then applied to the CTA images, with

necessary adjustments made to derive the tailored VOI (Figure 2).

Segmentation of the hematoma VOIs was independently carried

out by the aforementioned two neuroimaging diagnosticians.

Feature extraction and selection

A total of 120 quantitative features were extracted from

each VOI in the original images using the pyradiomics package

(http://pyradiomics.readthedocs.io/en/latest/index.html). In

addition, seven filters were employed to transform the original

images to capture additional information. These filters included

the exponential filter, gradient filter, local binary pattern filter,

logarithm filter, square filter, square root filter, and wavelet filter.

Collectively, these processes resulted in the extraction of 1,688

candidate features. The candidate features were then categorized

into three groups based on their relevance to (1) shape, (2) first-

order statistics (histogram features), and (3) second-order statistics

(texture features). The intraclass correlation coefficient (ICC) was

computed to assess the reproducibility of feature extraction. Only

features with an ICC >0.75 were included for further analysis.

To address the issue of redundant features, ANOVA F-test

statistic was employed to select the top 100 features. Prior to

feature screening, all features were standardized using Z-scores.

The selected features were sorted based on their F-values, with

higher values indicating lower p-values. Subsequently, the least

absolute shrinkage and selection operation (LASSO) LR algorithm

was employed to further reduce data redundancy and identify stable

features through the use of non-zero coefficients. To ensure an

unbiased comparison between the two models, an equal number

of features were also selected using LASSO. Considering the

relationship between the sample size and the number of features,

we set this number at 10 on empirical grounds.

Model construction

To ensure the integrity of the data distribution and minimize

the introduction of bias during data processing, data from all

patients were randomly stratified into a training set and a testing

set in a ratio of 4:1. This approach maintained the consistency of

data distribution between the two sets.

The features selected from both NCCT and CTA images were

utilized to train the radiomics prediction models in conjunction

with the widely used and effective LR machine learning classifier

(21). The prediction capabilities of the constructed models were

subsequently evaluated using an independent testing set. The

predictive performances of the two radiomics models (the NCCT

model and CTA model) were then compared with that of the spot

sign model.

Statistical analysis

An independent samples t-test or Mann–Whitney U-test was

employed for continuous variables, and the chi-squared test was

adopted for categorical variables. Continuous variables are reported

in the form of mean± standard deviation, and categorical variables

are summarized in the form of count (percentage). The predictive

performance of each model in estimating hematoma enlargement

was evaluated via receiver operating characteristic (ROC) curve

analysis. The area under the curve (AUC) values of the ROC curves
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FIGURE 2

Schematic diagram of hematoma segmentation: (A) NCCT image; (B) reconstructed CTA image of the same patient. CTA, computed tomography

angiography; NCCT, non-contrast computed tomography.

were compared using the DeLong test. Statistical significance was

determined when the bilateral p < 0.05. All statistical analyses

were conducted using the SPSS software package (version 25.0),

and the MedCalc software package (version 18.11.3) was utilized

to generate and compare the ROC curves.

Results

Patient characteristics

Following the aforementioned criteria, 182 patients diagnosed

with SICH were included in this study. Based on the follow-up CT,

these patients were categorized into the HE group (67 cases) or the

non-HE group (115 cases). Table 1 presents the statistical analysis

of relevant factors, revealing a significant difference between theHE

group (4 cases) and the non-HE group (0 cases) in terms of the

pre-onset use of anticoagulants (warfarin) (P = 0.017). However,

no significant differences between the two groups were observed

in terms of gender, age, systolic blood pressure, diastolic blood

pressure, or the use of antiplatelet drugs (aspirin) (all P > 0.05).

Radiological characteristics and the spot
sign model

Statistically significant differences between the HE and non-HE

groups were observed in the initial volume, shape, swirl sign, blend

sign, black hole sign, island sign, and CTA spot sign (P < 0.05).

However, there was no significant disparity between the two groups

in time from symptom onset to baseline CT (P > 0.05) (Table 1).

A random stratified sampling approach was employed to divide

the data from the 182 patients into a training set (145 cases) and a

testing set (37 cases). These sets were then submitted independently

to univariate analysis, and no significant differences in radiological

characteristics between them were found (all P > 0.05). In both

the training set and the testing set, the HE group displayed larger

initial volume and a higher likelihood of exhibiting the blend sign

and the CTA spot sign (all P < 0.05). In the training set, irregular

shape (P = 0.015), the swirl sign (P = 0.046), and the island sign

(P = 0.042) were associated with hematoma enlargement. In the

testing set, there was a significant difference between the two groups

in terms of location of the hematoma (P = 0.038). However, when

hematoma location and the black hole sign were examined within

their respective sets, no statistically significant differences were

found between the two groups within either the training set or the

testing set (all P > 0.05). Detailed results are presented in Table 2.

A binary LR model was constructed to analyze the CTA spot

sign as a predictor of HE. In the training set, the AUC, sensitivity,

specificity, and accuracy were 0.726, 0.528, 0.924, and 0.779,

respectively. In the testing set, the AUC, sensitivity, specificity, and

accuracy were 0.720, 0.571, 0.870, and 0.757, respectively (Table 3).

Construction and validation of radiomics
models

Following the aforementioned screening methods, 10 optimal

radiomics features were extracted from the NCCT and CTA images

(Figure 3 illustrates feature selection using LASSO regression). The

remaining features were employed to construct radiomics models

in combination with the LR machine learning classifier, using a

five-fold cross-validation approach (Figure 4). In the training set,

the NCCT model achieved an AUC of 0.938, sensitivity of 0.849,

specificity of 0.924, and accuracy of 0.897. Similarly, the CTAmodel

yielded an AUC of 0.904, sensitivity of 0.774, specificity of 0.902,

and accuracy of 0.855. In the testing set, the NCCT model achieved

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2024.1332509
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2024.1332509

TABLE 1 Comparison of demographic, clinical, and baseline radiological characteristics between the HE group and the non-HE group.

HE group (n = 67) non-HE group (n = 115) p-value

Gender (male/female) 45/22 73/42 0.615#

Age (y) 60.6± 13.0 59.1± 13.5 0.466∗

Systolic blood pressure (mmHg) 160.2± 25.2 160.3± 24.5 0.968∗

Diastolic blood pressure (mmHg) 91.4± 16.6 90.4± 14.1 0.685∗

Use of anticoagulants (warfarin) 4 (6.0) 0 (0) 0.017
#

Symptom onset to baseline CT (h) 3.17± 1.28 3.47± 1.37 0.226∗

Use of antiplatelets (aspirin) 5 (7.5) 3 (2.6) 0.244#

Location (deep/lobe) 39/28 82/33 0.071#

Intraventricular hemorrhage extension 15 (22.4) 20 (22.1) 0.409#

Initial volume (mL) 43.3± 24.9 27.5± 17.1 <0.001
∗

Shape, irregular 38 (56.7) 42 (36.5) 0.008
#

Swirl sign 26 (38.8) 24 (20.9) 0.009
#

Blend sign 24 (35.8) 15 (13.0) <0.001
#

Black hole sign 9 (13.4) 5 (4.3) 0.027
#

Island sign 14 (20.9) 9 (7.8) 0.010
#

CTA spot sign 36 (53.7) 10 (8.7) <0.001
#

#Chi-squared test, with percentages in parentheses. ∗Independent samples t-test or Mann–Whitney U-test; data reported are the mean ± standard deviation. Boldface indicates statistical

significance. HE, hematoma expansion.

TABLE 2 Comparison of radiological characteristics between the HE group and the non-HE group in the training and testing sets.

Training set (n = 145) Testing set (n = 37) p-value

HE (n = 53) non-HE (n = 92) p-value HE (n = 14) non-HE (n = 23) p-value

Location (deep/lobe) 34/19 65/27 0.418# 5/9 17/6 0.038
# 0.311#

Intraventricular

hemorrhage extension

11 (20.8) 16 (17.4) 0.616# 4 (28.6) 4 (17.4) 0.445# 0.679#

Initial volume (mL) 42.6± 25.7 26.6± 16.1 <0.001
∗ 45.9± 22.1 31.1± 20.8 0.048

∗ 0.245∗

Shape, irregular 30 (56.6) 33 (35.9) 0.015
# 8 (57.1) 9 (39.1) 0.328# 0.785#

Swirl sign 21 (39.6) 22 (23.9) 0.046
# 5 (35.7) 2 (8.7) 0.080# 0.192#

Blend sign 18 (34.0) 13 (14.1) 0.005
# 6 (42.9) 2 (8.7) 0.035

# 0.974#

Black hole sign 6 (11.3) 4 (4.3) 0.209# 3 (21.4) 1 (4.3) 0.142# 0.651#

Island sign 10 (18.9) 7 (7.6) 0.042
# 4 (28.6) 2 (8.7) 0.173# 0.648#

CTA spot sign 28 (52.8) 7 (7.6) <0.001
# 8 (57.1) 3 (13.0) 0.008

# 0.485#

#Chi-squared test, with percentages in parentheses. ∗Independent samples t-test or Mann–Whitney U test; data reported are the mean± standard deviation. Boldface test statistical significance.

CTA, computed tomography angiography; HE, hematoma expansion.

an AUC of 0.925, sensitivity of 0.786, specificity of 0.913, and

accuracy of 0.865. Similarly, the CTA model resulted in an AUC of

0.873, sensitivity of 0.714, specificity of 0.913, and accuracy of 0.838

(Table 3).

Comparison of the models on predictive
performance

As illustrated in Table 4 and Figure 5, for the training set, both

the NCCTmodel and the CTAmodel resulted in significantly larger

AUCs compared to the spot sign model (all P < 0.001), while no

statistically significant difference was observed between the NCCT

model and the CTA model (P = 0.068). For the testing set, the

NCCT model resulted in a larger AUC than the spot sign model

(P = 0.041), while no significant difference was found between the

NCCT model and the CTA model, or between the CTA model and

the spot signmodel (all P> 0.05). Figure 6 showcases a comparison

of two SICH cases (with and without the spot sign). The radiomics

models could successfully predict HE, even in cases where the spot

sign was absent.

Discussion

HE is a dynamic process influenced by active bleeding and

serves as an important variable associated with clinical prognosis.

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2024.1332509
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2024.1332509

TABLE 3 Predictive performance of three models for HE in the training and testing sets.

AUC (95% CI) Sensitivity Specificity Accuracy

Training set Spot sign model 0.726 (0.646, 0.797) 0.528 0.924 0.779

NCCT model 0.938 (0.886, 0.971) 0.849 0.924 0.897

CTA model 0.904 (0.844, 0.947) 0.774 0.902 0.855

Testing set Spot sign model 0.720 (0.549, 0.855) 0.571 0.870 0.757

NCCT model 0.925 (0.790, 0.986) 0.786 0.913 0.865

CTA model 0.873 (0.722, 0.959) 0.714 0.913 0.838

AUC, area under the curve; CI, confidence interval; CTA, computed tomography angiography; HE, hematoma expansion; NCCT, non-contrast computed tomography.

FIGURE 3

Feature selection using LASSO regression: the loss path of LASSO (A, C), and the regression coe�cients of LASSO (B, D), for (A, B) the NCCT model

and (C, D) the CTA model. CTA, computed tomography angiography; LASSO, least absolute shrinkage and selection operation; NCCT, non-contrast

computed tomography.

In this study, we developed two radiomics models using NCCT and

CTA images to anticipate HE and examined their performance in

comparison to the CTA spot sign model. Our findings indicated

that both radiomics models were effectively predictors of HE,

demonstrating comparable performance. However, it is noteworthy

that the NCCT radiomics model outperformed the traditional spot

sign model in its predictive capabilities.

Initially, quantitative CT densitometry of hematoma through

NCCT was utilized to predict ICH enlargement (22). However, this

method provided limited information. Subsequently, dual-energy

CT analysis of iodine concentration within the hematoma emerged

as an improved approach for predicting HE. This analysis also led

to the proposal of diffused leakage, indicating that the extravasation

of contrast agents was not solely responsible for the aggregation

observed within the hematoma (23). The advent of texture analysis

and radiomics feature analysis in neuroimaging further contributed

to the field. For instance, texture analysis parameters such as

variance and uniformity demonstrated the ability to independently

forecast HE following Laplacian of Gaussian operator filtering

processing (24). Other researchers have subsequently demonstrated

the predictive value of radiomics features for hematoma growth as

well (17, 18).

Consistent with previous research findings (10, 25), our

results reaffirmed the CTA spot sign as a well-established

imaging marker for independently predicting HE in patients

with ICH, demonstrating higher specificity than sensitivity.

The appearance of the spot sign is believed to stem from

contrast extravasation caused by ongoing bleeding from
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FIGURE 4

The remaining features of LASSO regression screening and the ranking of weight coe�cients output by the corresponding LR classifier under (A) the

NCCT model, (B) the CTA model. CTA, computed tomography angiography; LASSO, least absolute shrinkage and selection operation; LR, logistic

regression; NCCT, non-contrast computed tomography.

TABLE 4 Comparison of the three models on predictive performance for

hematoma expansion.

Training set Testing set

NCCT model vs. CTA model 0.068 0.440

NCCT model vs. Spot sign model <0.001 0.041

CTA model vs. Spot sign model <0.001 0.182

Boldface indicates statistical significance. CTA, computed tomography angiography; NCCT,

non-contrast computed tomography.

ruptured blood vessels (26). Meta-analyses have indicated

that the sensitivity of the spot sign is ∼53% (11), highlighting

the fact that a significant portion of expanded hematomas

may not exhibit this characteristic. Our study indicated that

the radiomics models exhibited superior sensitivity to the

spot sign.

In contrast to previous studies (17–19), our study utilized

multimodal CT images and compared these with the spot

sign. Prior research has demonstrated the superior predictive

performance of the spot sign compared to NCCT signs (27),

such as the blend sign. Hence, our initial assumption was that

the CTA model would outperform the NCCT model. However,

our findings contradicted this hypothesis. We speculate that these

results may be attributed to the infiltration of contrast medium

into hematomas during active bleeding, which occurs during

CTA scans. Comparatively, the diffusion of contrast medium

within the expanded hematoma weakens the disparities in CT

values among each voxel, as well as the discrepancies in certain

texture features. Consequently, the radiomics of the expanded
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FIGURE 5

Comparison of ROC curves between the two radiomics models and the spot sign model for (A) the training set and (B) testing set. CTA, computed

tomography angiography; NCCT, non-contrast computed tomography; ROC, receiver operating characteristic.

FIGURE 6

A comparison of two spontaneous intracerebral hemorrhage cases (with and without the spot sign) according to radiomics models. Case 1 with CTA

spot sign, a 49-year-old woman: (A) initial NCCT; (B) CTA showed spot sign (white arrow); (C) follow-up CT revealed HE. Case 2 without CTA spot

sign, a 55-year-old man: (D) initial NCCT; (E) CTA did not show spot sign; (F) follow-up CT still revealed HE. Both radiomics models provided

successful predictions for these cases. HE, hematoma expansion; NCCT, non-contrast computed tomography; CTA, computed tomography

angiography.
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hematoma exhibited similarities to those of stable hematomas in

the CTA model.

This study has elucidated the value of radiomics as a predictive

tool for HE, particularly in the significant number of patients

who lack the spot sign. Additionally, radiomics models offered

objectivity and convenience, unlike the spot sign, determination

of which may be influenced by experiential bias. Integrating

radiomics into clinical practice, specifically by utilizing NCCT-

based radiomics models, could yield commendable predictive

efficacy for HE, potentially reducing the need for unnecessary CTA

examinations. This approach could consequentlymitigate radiation

exposure and minimize contrast agent usage.

Several limitations should be noted with respect to our study.

First, certain patients were excluded due to either having undergone

surgical treatment before follow-up CT or displaying motion

artifacts. This exclusion could potentially have introduced biases

into the results. Second, although manual segmentation of VOIs

showed good reproducibility, automatic segmentation techniques

may offer increased speed and accuracy, especially for larger sample

sizes. Third, our sample size was limited due to the relatively

small number of patients who underwent concurrent NCCT and

CTA examinations, necessitating further validation in multi-center

studies with larger cohorts.

Conclusion

This study validated the predictive capability of radiomics

models utilizing NCCT and CTA images for SICH expansion.

Remarkably, our NCCT radiomics model exhibited superior

performance compared to the spot sign model and was comparable

to our CTA radiomics model. This has implications in terms

of reducing the need for CTA examinations, thereby mitigating

radiation exposure and contrast agent utilization. We firmly

believe that radiomics analysis will play a crucial role in future

clinical practice, aiding in treatment decisions for high-risk patients

susceptible to HE.
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