60 research outputs found

    A Review on Modification Methods of Adsorbents for Naphthalene in Environment

    No full text
    Naphthalene is one of the most hazardous polycyclic aromatic hydrocarbons to public health. This paper comprehensively summarized the recent development of modification methods of adsorbents for naphthalene removal in the environment. Various modification methods used in the adsorbent were summarized, mainly including acid oxidation modification, salt modification, doping modification, amino modification, microwave modification, and plasma modification. These methods enhance the adsorption performance of naphthalene mainly by changing the pore size and the oxygen content on the surface of the adsorbent. The modification parameters and their effects on naphthalene removal as well as the advantages and disadvantages of each method are described in detail. This review provides the necessary inspiration and guidance for the researchers who develop polycyclic aromatic hydrocarbons adsorption materials in the environment

    A Review on Modification Methods of Adsorbents for Naphthalene in Environment

    No full text
    Naphthalene is one of the most hazardous polycyclic aromatic hydrocarbons to public health. This paper comprehensively summarized the recent development of modification methods of adsorbents for naphthalene removal in the environment. Various modification methods used in the adsorbent were summarized, mainly including acid oxidation modification, salt modification, doping modification, amino modification, microwave modification, and plasma modification. These methods enhance the adsorption performance of naphthalene mainly by changing the pore size and the oxygen content on the surface of the adsorbent. The modification parameters and their effects on naphthalene removal as well as the advantages and disadvantages of each method are described in detail. This review provides the necessary inspiration and guidance for the researchers who develop polycyclic aromatic hydrocarbons adsorption materials in the environment

    A microfluidics-based method for isolation and visualization of cells based on receptor-ligand interactions.

    No full text
    Receptor-ligand binding has been analyzed at the protein level using isothermal titration calorimetry and surface plasmon resonance and at the cellular level using interaction-associated downstream gene induction/suppression. However, no currently available technique can characterize this interaction directly through visualization. In addition, all available assays require a large pool of cells; no assay capable of analyzing receptor-ligand interactions at the single-cell level is publicly available. Here, we describe a new microfluidic chip-based technique for analyzing and visualizing these interactions at the single-cell level. First, a protein is immobilized on a glass slide and a low-flow-rate pump is used to isolate cells that express receptors that bind to the immobilized ligand. Specifically, we demonstrate the efficacy of this technique by immobilizing biotin-conjugated FGL2 on an avidin-coated slide chip and passing a mixture of GFP-labeled wild-type T cells and RFP-labeled FcγRIIB-knockout T cells through the chip. Using automated scanning and counting, we found a large number of GFP+ T cells with binding activity but significantly fewer RFP+ FcγRIIB-knockout T cells. We further isolated T cells expressing a membrane-anchored, tumor-targeted IL-12 based on the receptor's affinity to vimentin to confirm the versatility of our technique. This protocol allows researchers to isolate receptor-expressing cells in about 4 hours for further downstream processing

    The current fertilizer regimes cause phosphorus deficit in paddy soils and decreased rice phosphorus uptake: a study in Shanghai, China

    No full text
    13 Pág.Excessive phosphorus (P) fertilization in intensive rice-cultivation areas in China has caused serious environmental problems. However, relatively little research has been done on investigating the soil P balance in rice production systems based on different fertilizer regimes. Our study investigated the dynamic variation of soil P balance and rice P use efficiency and productivity from 2014 to 2018 in the paddy fields under synthetic fertilizer (CF) and manure application (OF) regimes based on the practices of local farmers. Flooding water on the paddy fields tends to cause P loss via runoff and leaching. A lysimeter system was used to monitor P loss from paddy fields, which overcame the limitations of real-time monitoring discharge volume and sample-collection. The results with relatively higher rainfall intensity in 2014 and 2015, in total, 4.69 kg P ha−1 under CF and 8.39 kg P ha−1 under OF were lost via runoff in 2014, with 13.6 kg P ha−1 under CF and 17.8 kg P ha−1 under OF in 2015, whereas from 2015 to 2018, no more than 5 kg P ha−1 was lost in CF or OF via runoff. Leaching showed a similar, varying trend for both CF and OF. Furthermore, during the 5 years, a continuous soil P deficit was observed, except in 2017 and 2018 for CF and 2018 for OF. The net P retention ranged from −15.31 to 6.2 kg ha−1 for CF and from −23.65 to 2.64 kg ha−1 for OF. The continuous P deficit in paddy soils might have reduced soil P storage. These huge P losses undermined rice yield production. In parallel, after 2014, the grain yield decreased from 10,885.7 in 2014 to 6266.7 kg ha−1 in 2017 under CF and from 10,607.6 to 6649.6 kg ha−1 under OF. Overall, these results reveal a risk of declining P storage in paddy soils and a potential menace on food safety under the current fertilizer management, suggesting that novel fertilizer strategies need to be developed for reserving P storage in paddy fields.Financial support for this study was provided by the Shanghai “Science and Technology Innovation Action Plan” Project (22002400300) and National Key Research And Development Program of China (No. 2016YFD0801106).Peer reviewe

    The Effect of Chinese Traditional Medicine Huaiqihuang (HQH) on the Protection of Nephropathy

    No full text
    Kidney disease is one of the common diseases with high morbidity and high mortality, which brings a huge burden to the society and the patient’s family. The pathogenesis, treatment, and prognosis of kidney diseases are related to oxidative stress, inflammation, mitochondrial damage, and immune dysfunction. However, existing treatments always cause some damage to the kidneys. Kidney disease and immunosuppressant used together often lead to drug toxicity, patients with weakened immunity, organic rupture of the normal structure of the kidney, damage to the physiological function of the kidney, etc. Huaiqihuang is a kind of traditional Chinese medicine with a history of more than one thousand years. According to research, Robinia pseudoacacia can regulate the immune function by regulating oxidative stress, calcium inflow, and mitochondrial ATP. At the same time, it is also involved in regulating the ways of cell death, such as apoptosis, autophagy, ferroptosis, pyroptosis, and clockophagy, to reduce kidney damage, which has important clinical value. This article reviews the exact mechanism and clinical application of Huaiqihuang in different types of nephropathy. The aim is to provide new ideas for the treatment of clinical nephropathy

    High-Efficiency Adsorption of SARS-CoV-2 Spike 1 Protein by Plasma-Modified Porous Polymers

    No full text
    Under the background of the COVID-19 pandemic, this study reports an affordable and easily prepared porous material modified by nanosecond-pulsed discharge plasma, which can adsorb SARS-CoV-2 S1 protein efficiently. Both Western blotting and an enzyme-linked immunosorbent assay were used to detect the adsorption efficiency of SARS-CoV-2 S1 protein. The physical and chemical properties of the modified porous polymer were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. We found that the new type of porous polymer material presented an excellent performance on SARS-CoV-2 S1 protein adsorption, whose adsorption efficiency reached 99.99% in 1 min. Both the physical and chemical characterizations showed that the material has many fresh pores on the material surface and that the surface is implanted with polar functional groups (C−O, C=O, O−C=O and −NH), which gives the material a high chemisorption performance along with an enhanced physical adsorption performance. Notably, the material can be prepared at prices ranging in the tens of dollars per kilogram, which shows that it could have great applications for respiratory virus protection in global epidemic states

    Expression of wild-type PtrIAA14.1, a poplar Aux/IAA gene causes morphological changes in Arabidopsis

    Get PDF
    Aux/IAA proteins are transcriptional repressors that control auxin signaling by interacting with Auxin Response Factors (ARFs). So far all of the identified Aux/IAA mutants with auxin-related phenotypes in Arabidopsis and rice (Oryza sativa) are dominant gain-of-function mutants, with mutantions in Domain II that affected stability of the corresponding Aux/IAA proteins. On the other hand, morphological changes were observed in knock-down mutants of Aux/IAA genes in tomato (Solanum lycopersicum), suggesting that functions of Aux/IAA proteins may be specific for certain plant species. We report here the characterization of PtrIAA14.1, a poplar (Populus trichocarpa) homologue of IAA7. Bioinformatics analysis showed that PtrIAA14.1 is a classic Aux/IAA protein. It contains four conserved domains with the repressor motif in Domain I, the degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. Protoplast transfection assays showed that PtrIAA14.1 is localized in nucleus. It is unable in the presence of auxin, and it represses auxin response reporter gene expression. Expression of wild type PtrIAA14.1 in Arabidopsis resulted in auxin-related phenotypes including down-curling leaves, semi-draft with increased number of branches, and greatly reduced fertility, but expression of the Arabidopsis Aux/IAA genes tested remain largely unchanged in the transgenic plants. Protein-protein interaction assays in yeast and protoplasts showed that PtrIAA14.1 interacted with ARF5, but not other ARFs. Consistent with this observation, vascular patterning was altered in the transgenic plants, and the expression of AtHB8 (Arabidopsis thaliana Homeobox Gene 8) was reduced in transgenic plants

    High-Efficiency Adsorption of SARS-CoV-2 Spike 1 Protein by Plasma-Modified Porous Polymers

    No full text
    Under the background of the COVID-19 pandemic, this study reports an affordable and easily prepared porous material modified by nanosecond-pulsed discharge plasma, which can adsorb SARS-CoV-2 S1 protein efficiently. Both Western blotting and an enzyme-linked immunosorbent assay were used to detect the adsorption efficiency of SARS-CoV-2 S1 protein. The physical and chemical properties of the modified porous polymer were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. We found that the new type of porous polymer material presented an excellent performance on SARS-CoV-2 S1 protein adsorption, whose adsorption efficiency reached 99.99% in 1 min. Both the physical and chemical characterizations showed that the material has many fresh pores on the material surface and that the surface is implanted with polar functional groups (C−O, C=O, O−C=O and −NH), which gives the material a high chemisorption performance along with an enhanced physical adsorption performance. Notably, the material can be prepared at prices ranging in the tens of dollars per kilogram, which shows that it could have great applications for respiratory virus protection in global epidemic states
    corecore