77 research outputs found

    Stable Internal Reference Genes for Normalizing Real-Time Quantitative PCR in Baphicacanthus cusia under Hormonal Stimuli and UV Irradiation, and in Different Plant Organs

    Get PDF
    Baphicacanthus cusia (Nees) Bremek, the plant source for many kinds of drugs in traditional Chinese medicine, is widely distributed in South China, especially in Fujian. Recent studies about B. cusia mainly focus on its chemical composition and pharmacological effects, but further analysis of the plant's gene functions and expression is required to better understand the synthesis of its effective compounds. Real-time quantitative polymerase chain reaction (RT-qPCR) is a powerful method for gene expression analysis. It is necessary to select a suitable reference gene for expression normalization to ensure the accuracy of RT-qPCR results. Ten candidate reference genes were selected from the transcriptome datasets of B. cusia in this study, and the expression stability was assessed across 60 samples representing different tissues and organs under various conditions, including ultraviolet (UV) irradiation, hormonal stimuli (jasmonic acid methyl ester and abscisic acid), and in different plant organs. By employing different algorithms, such as geNorm, NormFinder, and BestKeeper, which are complementary approaches based on different statistical procedures, 18S rRNA was found to be the most stable gene under UV irradiation and hormonal stimuli, whereas ubiquitin-conjugating enzyme E2 was the best suitable gene for different plant organs. This novel study aimed to screen for suitable reference genes and corresponding primer pairs specifically designed for gene expression studies in B. cusia, in particular for RT-qPCR analyses

    Uif, a Large Transmembrane Protein with EGF-Like Repeats, Can Antagonize Notch Signaling in Drosophila

    Get PDF
    <div><h3>Background</h3><p>Notch signaling is a highly conserved pathway in multi-cellular organisms ranging from flies to humans. It controls a variety of developmental processes by stimulating the expression of its target genes in a highly specific manner both spatially and temporally. The diversity, specificity and sensitivity of the Notch signaling output are regulated at distinct levels, particularly at the level of ligand-receptor interactions.</p> <h3>Methodology/Principal Findings</h3><p>Here, we report that the <em>Drosophila</em> gene <em>uninflatable</em> (<em>uif</em>), which encodes a large transmembrane protein with eighteen EGF-like repeats in its extracellular domain, can antagonize the canonical Notch signaling pathway. Overexpression of Uif or ectopic expression of a neomorphic form of Uif, Uif*, causes Notch signaling defects in both the wing and the sensory organ precursors. Further experiments suggest that ectopic expression of Uif* inhibits Notch signaling <em>in cis</em> and acts at a step that is dependent on the extracellular domain of Notch. Our results suggest that Uif can alter the accessibility of the Notch extracellular domain to its ligands during Notch activation.</p> <h3>Conclusions/Significance</h3><p>Our study shows that Uif can modulate Notch activity, illustrating the importance of a delicate regulation of this signaling pathway for normal patterning.</p> </div

    Adaptive Control for Hypersonic Vehicles With Time-Varying Faults

    No full text

    Fusing Infrared and Visible Images of Different Resolutions via Total Variation Model

    No full text
    In infrared and visible image fusion, existing methods typically have a prerequisite that the source images share the same resolution. However, due to limitations of hardware devices and application environments, infrared images constantly suffer from markedly lower resolution compared with the corresponding visible images. In this case, current fusion methods inevitably cause texture information loss in visible images or blur thermal radiation information in infrared images. Moreover, the principle of existing fusion rules typically focuses on preserving texture details in source images, which may be inappropriate for fusing infrared thermal radiation information because it is characterized by pixel intensities, possibly neglecting the prominence of targets in fused images. Faced with such difficulties and challenges, we propose a novel method to fuse infrared and visible images of different resolutions and generate high-resolution resulting images to obtain clear and accurate fused images. Specifically, the fusion problem is formulated as a total variation (TV) minimization problem. The data fidelity term constrains the pixel intensity similarity of the downsampled fused image with respect to the infrared image, and the regularization term compels the gradient similarity of the fused image with respect to the visible image. The fast iterative shrinkage-thresholding algorithm (FISTA) framework is applied to improve the convergence rate. Our resulting fused images are similar to super-resolved infrared images, which are sharpened by the texture information from visible images. Advantages and innovations of our method are demonstrated by the qualitative and quantitative comparisons with six state-of-the-art methods on publicly available datasets

    Feature Mining and Sensitivity Analysis with Adaptive Sparse Attention for Bearing Fault Diagnosis

    No full text
    Bearing fault diagnosis for equipment-safe operation has a crucial role. In recent years, more achievements have been made in bearing fault diagnosis. However, for the fault diagnosis model, the representation and sensitivity of bearing fault features have a great influence on the diagnosis output results; thus, the attention mechanism is particularly important for the selection of features. However, global attention focuses on all sequences, which is computationally expensive and not ideal for fault diagnosis tasks. The local attention mechanism ignores the relationship between non-adjacent sequences. To address the respective shortcomings of global attention and local attention, an adaptive sparse attention network is proposed in this paper to filter fault-sensitive information by soft threshold filtering. In addition, the effects of different signal representation domains on fault diagnosis results are investigated to filter out signal representation forms with better performance. Finally, the proposed adaptive sparse attention network is applied to cross-working conditions diagnosis of bearings. The adaptive sparse attention mechanism focuses on the signal characteristics of different frequency bands for different fault types. The proposed network model achieves better overall performance when comparing the cross-conditions diagnosis accuracy and model convergence speed

    Apparent Diffusion Coefficient of Diffusion-Weighted Imaging in Evaluation of Cervical Intervertebral Disc Degeneration: An Observational Study with 3.0 T Magnetic Resonance Imaging

    No full text
    Aims. To investigate the correlation between the apparent diffusion coefficient (ADC) value and cervical intervertebral disc degeneration in adult symptomatic patients. Methods. A total of 52 symptomatic and 40 healthy volunteers were included. DWI and routine MRI examinations were performed to their cervical spines. The cervical discs (from C2-C3 to C6-C7) were graded according to the Pfirrmann grading system, and ADC values of the nucleus pulposus (NP) were measured. Differences of the ADC values between different genders and anatomic levels were analyzed; the correlation between the ADC value and the Pfirrmann grade was investigated. The cut-off ADC values of each Pfirrmann grade were calculated. Results. The mean ADC value of the NP decreased with increasing Pfirrmann grade (I–V) upon both patients and asymptotic volunteers. The ADC value decreased descendingly from C2-C3 to C5-C6 (P0.05). Significant negative correlations between the ADC value and either age or Pfirrmann grade were observed. Conclusions. Our preliminary findings suggest that the ADC value obtained by DWI can provide a reliable indicator to evaluate the cervical disc degeneration

    Apparent diffusion coefficient of diffusion-weighted imaging in evaluation of cervical intervertebral disc degeneration : an observational study with 3.0 T magnetic resonance imaging

    No full text
    Aims. To investigate the correlation between the apparent diffusion coefficient (ADC) value and cervical intervertebral disc degeneration in adult symptomatic patients. Methods. A total of 52 symptomatic and 40 healthy volunteers were included. DWI and routine MRI examinations were performed to their cervical spines. The cervical discs (from C2-C3 to C6-C7) were graded according to the Pfirrmann grading system, and ADC values of the nucleus pulposus (NP) were measured. Differences of the ADC values between different genders and anatomic levels were analyzed; the correlation between the ADC value and the Pfirrmann grade was investigated. The cut-off ADC values of each Pfirrmann grade were calculated. Results. The mean ADC value of the NP decreased with increasing Pfirrmann grade (I–V) upon both patients and asymptotic volunteers. The ADC value decreased descendingly from C2-C3 to C5-C6 (P<0.05) and then increased at C6-C7 (P<0.05). Additionally, the comparison of the ADC values between different genders achieved statistical significance at each anatomical level (P<0.05), except at C6-C7 (P<0.05). Significant negative correlations between the ADC value and either age or Pfirrmann grade were observed. Conclusions. Our preliminary findings suggest that the ADC value obtained by DWI can provide a reliable indicator to evaluate the cervical disc degeneration

    Cycling-Induced Capacity Increase of Graphene Aerogel/ZnO Nanomembrane Composite Anode Fabricated by Atomic Layer Deposition

    No full text
    Abstract Zinc oxide (ZnO) nanomembranes/graphene aerogel (GAZ) composites were successfully fabricated via atomic layer deposition (ALD). The composition of GAZ composites can be controlled by changing the number of ALD cycles. Experimental results demonstrated that the anode made from GAZ composite with ZnO nanomembrane of 100 ALD cycles exhibited highest specific capacity and best rate performance. A capacity increase of more than 2 times during the first 500 cycles was observed, and a highest capacity of 1200 mAh g−1 at current density of 1000 mA g−1 was observed after 500 cycles. On the basis of detailed electrochemical investigations, we ascribe the remarkable cycling-induced capacity increase to the alloying process accompanied by the formation of a polymer layer resulting from kinetically activated electrolyte degradation at low voltage regions

    Bendable Photodetector on Fibers Wrapped with Flexible Ultrathin Single Crystalline Silicon Nanomembranes

    No full text
    Silicon (Si) nanomembranes (NMs) enable conformal covering on complicated surfaces for novel applications. We adopt classical fibers as flexible/curved substrates and wrap them with freestanding ultrathin Si-NMs with a thickness of ∼20 nm. Intrinsic defects in single-crystalline Si-NMs provide a flow path for hydrofluoric acid (HF) to release the NM with a consecutive area of ∼0.25 cm<sup>2</sup>. Such Si-NMs with ultralow flexural rigidities are transferred onto a single-mode fiber (SMF) and functionalized into bendable photodetectors, which detects the leaked light when the fiber is bent. Our demonstration exemplifies optoelectronic applications in flexible photodetector for Si-NMs in a three-dimensional (3D) geometry
    • …
    corecore