33 research outputs found

    Efficacy and safety of levosimendan in patients with sepsis: a systematic review and network meta-analysis

    Get PDF
    Objective: We conducted a systematic review to assess the advantages and disadvantages of levosimendan in patients with sepsis compared with placebo, milrinone, and dobutamine and to explore the clinical efficacy of different concentrations of levosimendan.Methods: PubMed, Web of Science, Cochrane Library, Embase, CNKI, Wanfang data, VIP, and CBM databases were searched using such keywords as simendan, levosimendan, and sepsis. The search time was from the establishment of the database to July 2023. Two researchers were responsible for literature screening and data collection respectively. After the risk of bias in the included studies was evaluated, network meta-analysis was performed using R software gemtc and rjags package.Results: Thirty-two randomized controlled trials (RCTs) were included in the network meta-analysis. Meta-analysis results showed that while levosimendan significantly improved CI levels at either 0.1 µg/kg/min (mean difference [MD] [95%CrI] = 0.41 [−0.43, 1.4]) or 0.2 µg/kg/min (MD [95%CrI] =0.54 [0.12, 0.99]). Levosimendan, at either 0.075 µg/kg/min (MD [95% CrI] =0.033 [−0.75, 0.82]) or 0.2 µg/kg/min (MD [95% CrI] = −0.014 [−0.26, 0.23]), had no significant advantage in improving Lac levels. Levosimendan, at either 0.1 µg/kg/min (RR [95% CrI] = 0.99 [0.73, 1.3]) or 0.2 µg/kg/min (RR [95% CrI] = 1.0 [0.88, 1.2]), did not have a significant advantage in reducing mortality.Conclusion: The existing evidence suggests that levosimendan can significantly improve CI and lactate levels in patients with sepsis, and levosimendan at 0.1 µg/kg/min might be the optimal dose. Unfortunately, all interventions in this study failed to reduce the 28-day mortality.Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023441220

    Strategies to reinvigorate exhausted CD8+ T cells in tumor microenvironment

    Get PDF
    CD8+ T cell exhaustion is a stable dysfunctional state driven by chronic antigen stimulation in the tumor microenvironment (TME). Differentiation of exhausted CD8+ T cells (CD8+ TEXs) is accompanied by extensive transcriptional, epigenetic and metabolic reprogramming. CD8+ TEXs are mainly characterized by impaired proliferative and cytotoxic capacity as well as the increased expression of multiple co-inhibitory receptors. Preclinical tumor studies and clinical cohorts have demonstrated that T cell exhaustion is firmly associated with poor clinical outcomes in a variety of cancers. More importantly, CD8+ TEXs are regarded as the main responder to immune checkpoint blockade (ICB). However, to date, a large number of cancer patients have failed to achieve durable responses after ICB. Therefore, improving CD8+ TEXs may be a breakthrough point to reverse the current dilemma of cancer immunotherapy and eliminate cancers. Strategies to reinvigorate CD8+ TEXs in TME mainly include ICB, transcription factor-based therapy, epigenetic therapy, metabolism-based therapy and cytokine therapy, which target on different aspects of exhaustion progression. Each of them has its advantages and application scope. In this review, we mainly focus on the major advances of current strategies to reinvigorate CD8+ TEXs in TME. We summarize their efficacy and mechanisms, identify the promising monotherapy and combined therapy and propose suggestions to enhance the treatment efficacy to significantly boost anti-tumor immunity and achieve better clinical outcomes

    High Reversibility of Lattice Oxygen Redox in Na-ion and Li-ion Batteries Quantified by Direct Bulk Probes of both Anionic and Cationic Redox Reactions

    Get PDF
    The reversibility and cyclability of anionic redox in battery electrodes hold the key to its practical employments. Here, through mapping of resonant inelastic X-ray scattering (mRIXS), we have independently quantified the evolving redox states of both cations and anions in Na2/3Mg1/3Mn2/3O2. The bulk-Mn redox emerges from initial discharge and is quantified by inverse-partial fluorescence yield (iPFY) from Mn-L mRIXS. Bulk and surface Mn activities likely lead to the voltage fade. O-K super-partial fluorescence yield (sPFY) analysis of mRIXS shows 79% lattice oxygen-redox reversibility during initial cycle, with 87% capacity sustained after 100 cycles. In Li1.17Ni0.21Co0.08Mn0.54O2, lattice-oxygen redox is 76% initial-cycle reversible but with only 44% capacity retention after 500 cycles. These results unambiguously show the high reversibility of lattice-oxygen redox in both Li-ion and Na-ion systems. The contrast between Na2/3Mg1/3Mn2/3O2 and Li1.17Ni0.21Co0.08Mn0.54O2 systems suggests the importance of distinguishing lattice-oxygen redox from other oxygen activities for clarifying its intrinsic properties.Comment: 33 pages, 8 Figures. Plus 14 pages of Supplementary Materials with 12 Figure

    Extracellular vesicle-mediated communication between CD8+ cytotoxic T cells and tumor cells

    Get PDF
    Tumors pose a significant global public health challenge, resulting in numerous fatalities annually. CD8+ T cells play a crucial role in combating tumors; however, their effectiveness is compromised by the tumor itself and the tumor microenvironment (TME), resulting in reduced efficacy of immunotherapy. In this dynamic interplay, extracellular vesicles (EVs) have emerged as pivotal mediators, facilitating direct and indirect communication between tumors and CD8+ T cells. In this article, we provide an overview of how tumor-derived EVs directly regulate CD8+ T cell function by carrying bioactive molecules they carry internally and on their surface. Simultaneously, these EVs modulate the TME, indirectly influencing the efficiency of CD8+ T cell responses. Furthermore, EVs derived from CD8+ T cells exhibit a dual role: they promote tumor immune evasion while also enhancing antitumor activity. Finally, we briefly discuss current prevailing approaches that utilize functionalized EVs based on tumor-targeted therapy and tumor immunotherapy. These approaches aim to present novel perspectives for EV-based tumor treatment strategies, demonstrating potential for advancements in the field

    High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    Get PDF
    An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographsare installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without moving any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers

    Characteristics and Sources of Water-Soluble Inorganic Ions in PM<sub>2.5</sub> in Urban Nanjing, China

    No full text
    In this study, the water-soluble inorganic ions (WSIIs) composition of fine particulate matter (PM2.5) was measured in the northern Nanjing city from 2015 to 2021. NH4+, NO3− and SO42− concentrations dominated in total WSIIs (Na+, NH4+, K+, Mg2+, Ca2+, Cl−, NO3− and SO42−), accounting for 87.8%. The nitrate with highest average concentration among all ions was 11.0 μg·m−3. Total WSIIs concentrations were higher in winter and lower in summer, with the highest levels in December (45.6 μg·m−3) and the lowest levels in August (15.1 μg·m−3). NO3−/SO42− was higher than 1, indicating the important contribution of mobile sources. The aerosols exhibited a weak acidic by the molar ratio of water-soluble anions and cations. Positive matrix factorization (PMF) analysis results showed that secondary nitrate and sulfate were the major pollution sources in December 2016 and 2020. The contribution of secondary nitrate in 2020 increased by 47.6% compared to 2016, while that of secondary sulfate decreased by 42.4%. The potential source contribution results demonstrated that for secondary aerosol concentrations, the contribution of regional transport from north of Anhui increased, while the contribution of local emissions decreased. The results from this study could contribute to the better prevention and control of regional air pollution in the future

    Cell Cycle Arrest and Apoptosis in HT-29 Cells Induced by Dichloromethane Fraction From Toddalia asiatica (L.) Lam.

    No full text
    The roots of Toddalia asiatica (L.) Lam. (TA) has been often used in Chinese folk medicine to treat different diseases, including but not limited to arthritis, injuries, stomachache, and even tumors. However, the anti-cancer effects and the action mechanisms of TA remain elusive. Therefore, we firstly evaluated the effects of different extracts of TA on the growth of human colon cancer cells, and then tried to further elucidate their underlying molecular mechanisms. As a result, the dichloromethane fraction (DF) was found to possess the highest anti-proliferative activity with IC50 value at 18 μg/mL among all of the four extracts from TA, and strongly inhibited HT-29 cell growth and halted cell cycle progression in G2/M phase. DF also induced phosphatidylserine externalization and activated caspases -8, -9, and -3, suggesting DF induced apoptosis through intrinsic and extrinsic pathways. Furthermore, we found that HT-29 cell cycle arrest induced by DF could be the result of reactive oxygen species (ROS), as the ROS scavenger N-acetyl cysteine (NAC) attenuating it. Taken together, these results indicated that DF induced cell cycle arrest at G2/M phase and apoptosis in HT-29 cells, and could be a promising source for developing natural therapeutics for colon cancer

    Exploring the Spatial Heterogeneity and Influence Factors of Daily Travel Carbon Emissions in Metropolitan Areas: From the Perspective of the 15-min City

    No full text
    Most of the residents’ daily travel is concentrated within their 15-min walking distance. In China, derived from the 15-min city concept, the 15-min walkable area is often referred to as the 15-min pedestrian-scale neighborhood, and it has become a basic planning unit. Understanding the factors that influence the built environment of the 15-min pedestrian-scale neighborhood on the residents’ daily travel carbon emissions is critical to reduce urban carbon emissions. There may be spatial heterogeneity in daily travel carbon emissions as a dependent variable due to the spatial heterogeneity of built environment factors. Therefore, this study used data from the Wuhan City Resident Travel Survey to describe the spatial pattern of daily travel carbon emissions among Wuhan residents. The study examined the spatial heterogeneity of daily travel carbon emissions and explored the spatial differentiation of the built environment’s impact on daily travel carbon emissions within the 15-min pedestrian-scale neighborhood of the residents using spatial autocorrelation analysis and multi-scale geo-weighted regression (MGWR). The results indicate that Wuhan residents’ daily travel carbon emissions show an increasing circle structure from the center outward. In general, built environment elements in the 15-min pedestrian-scale neighborhood are closely related to the daily travel carbon emissions, and the direction and degree of impact of the built environment varies spatially. This study provides empirical evidence for controlling transportation carbon emissions

    Examining the Nonlinear and Synergistic Effects of Multidimensional Elements on Commuting Carbon Emissions: A Case Study in Wuhan, China

    No full text
    Understanding the specific effects of multidimensional elements of a built environment, transportation management policies, and the socio-demographics of travelers associated with commuting carbon emissions is significant for planners in promoting low-carbon and healthy urban development through transportation and land use and urban management policies. Most of the existing studies focus on the complex mechanisms affecting commuting behavior, but the relevant elements and specific mechanisms affecting commuting carbon emissions have not received sufficient attention. This study uses a random forest approach to analyze residential travel data from Wuhan, China. The results show that built environment and transportation demand management policies are critical to commuting carbon emissions, and that there is a non-linear association between multidimensional factors and commuting carbon emissions in Chinese cities. In addition, the study examines the synergistic effects of built environment and transportation management policies on commuting carbon emissions among different built environment elements. The results of the study provide valuable insights for planners in formulating low-carbon city and transportation development policies
    corecore