53 research outputs found

    Relationship of Seam Smoldering Velocity and Oxygen Volume Fraction Gradient in Roadway

    Get PDF
    AbstractSmoldering is an oxygen control reaction and its velocity is determined by oxygen supplying rate. Oxygen volume fraction gradient was used to characterize oxygen supplying rate in roadway according to situation that the velocity of wind flowing is very low during smoldering in roadway. Relationship of smoldering velocity and oxygen volume fraction gradient in roadway during lignite smoldering was researched in experiment drawing support of seam smoldering simulating experiment device in roadway and one-variable linear regression technology was used to establish the relation equation of smoldering velocity and oxygen volume fraction gradient in roadway when lignite was smoldering. This relation equation showed that smoldering velocity and oxygen volume fraction gradient took on linear increasing relationship in roadway during lignite smoldering

    Optical Multipath RF Self-Interference Cancellation Based on Phase Modulation for Full-Duplex Communication

    Get PDF
    Optical multipath RF self-interference cancellation (SIC) based on phase modulation for full-duplex communication is proposed and demonstrated experimentally. Phase modulation is utilized to convert the RF signal into optical domain, in which the time delay tuning, amplitude tuning and phase inversion for multipath RF SIC are completed. The comprehensive theoretical model of the optical multipath RF SIC system is established, and the factors affecting SIC performance including the time delay, amplitude and phase deviations are analyzed. The experimental results verify the feasibility of the proposed scheme for full-duplex communication with the cancellation depth of 26 dB and 28 dB over 100 MHz at central frequency of 6 GHz and 10 GHz, respectively. A figure of merit of the maximum interference to signal of interest ratio is defined to characterize the SOI recovery capability of optical RF SIC system

    The Effects of Temperature, Light and Moisture on the Seed Germination of Siphonostegia chinensis Benth.

    Get PDF
    To explore the optimum temperature, light intensityand water conditions for seed germination of Siphonostegia chinensis Benth.,seed germination experiment were carried out under different temperatures(5/15, 10/20, 15/25, 20/30℃), different light intensity(14h light/10h darkness, complete darkness)and different concentrations(0%, 5%, 10%, 15%, 20%)of PEG-6000 solution. In terms of concentration, 5% PEG was regarded as the low level, 10% and 15% as the medium level, and 20% as the high level. The results showed that (1) Germination rate, germination potential, and germination index were increased with the rise of temperature. In addition, seed germination was significantly higher under the dark conditions than that with the 14h light/10h darkness. (2) No seed germination occurred when the temperature was below 10/20 ºC at 14h light/10h darkness. (3) Under 14h light/10h darkness, the germination rate, germination potential and germination index first increased and then decreased with the increase of PEG concentration. The low concentration was more beneficial to the seed germination. (4) Under the condition of complete darkness, the germination rate, germination potential and germination index decline with fluctuation with the increase of PEG concentration. Seed germination of Siphonostegia chinensis Benth. was inhibited in high concentration of PEG

    Investigating cellular similarities and differences between upper tract urothelial carcinoma and bladder urothelial carcinoma using single-cell sequencing

    Get PDF
    BackgroundUpper tract urothelial carcinoma (UTUC) and bladder urothelial carcinoma (BLCA) both originate from uroepithelial tissue, sharing remarkably similar clinical manifestations and therapeutic modalities. However, emerging evidence suggests that identical treatment regimens may lead to less favorable outcomes in UTUC compared to BLCA. Therefore, it is imperative to explore molecular processes of UTUC and identify biological differences between UTUC and BLCA.MethodsIn this study, we performed a comprehensive analysis using single-cell RNA sequencing (scRNA-seq) on three UTUC cases and four normal ureteral tissues. These data were combined with publicly available datasets from previous BLCA studies and RNA sequencing (RNA-seq) data for both cancer types. This pooled analysis allowed us to delineate the transcriptional differences among distinct cell subsets within the microenvironment, thus identifying critical factors contributing to UTUC progression and phenotypic differences between UTUC and BLCA.ResultsscRNA-seq analysis revealed seemingly similar but transcriptionally distinct cellular identities within the UTUC and BLCA ecosystems. Notably, we observed striking differences in acquired immunological landscapes and varied cellular functional phenotypes between these two cancers. In addition, we uncovered the immunomodulatory functions of vein endothelial cells (ECs) in UTUC, and intercellular network analysis demonstrated that fibroblasts play important roles in the microenvironment. Further intersection analysis showed that MARCKS promote UTUC progression, and immunohistochemistry (IHC) staining revealed that the diverse expression patterns of MARCKS in UTUC, BLCA and normal ureter tissues.ConclusionThis study expands our multidimensional understanding of the similarities and distinctions between UTUC and BLCA. Our findings lay the foundation for further investigations to develop diagnostic and therapeutic targets for UTUC

    Beauvericin, a Bioactive Compound Produced by Fungi: A Short Review

    No full text
    Beauvericin is a cyclic hexadepsipeptide mycotoxin, which has insecticidal, antimicrobial, antiviral and cytotoxic activities. It is a potential agent for pesticides and medicines. This paper reviews the bioactivity, fermentation and biosynthesis of the fungal product beauvericin

    Short Legacy Effects of Growing Season Nitrogen Addition and Reduced Precipitation alter Soil Respiration during Nongrowing Season

    No full text
    The short legacy effects of growing season nitrogen (N) addition and reduced precipitation on nongrowing season soil respiration (Rs), autotrophic respiration (Ra), and heterotrophic respiration (Rh) are still unclear. Therefore, a field manipulative experiment to determine the responses of nongrowing season Rs and its components to growing season N addition and reduced precipitation was conducted in a temperate forest. The results show that growing season N addition and reduced precipitation significantly increased nongrowing season Rs by regulating the response of Ra and Rh. The combination of N addition and reduced precipitation also showed a much stronger effect on Rs and its components, but the magnitude and direction largely depended on the snowpack thickness. The effects of growing season N addition and reduced precipitation on nongrowing season Rs and its components were mediated by different sampling periods. N addition significantly decreased Rs by decreasing Rh in early winter and significantly increased Rs by increasing Ra in deep winter and late winter. All treatments decreased temperature sensitivity (Q10) of Rs and Rh. Our findings contribute to a better understanding of how nongrowing season Rs and its components will change under growing season N addition and reduced precipitation and could improve predictions of the future states of the soil C cycle in response to climate change

    Research on safety evaluation of bolt support based on analytic hierarchy process-entropy weight method

    No full text
    To evaluate the safety performance of bolt support scientifically, the factors affecting bolt support are systematically analyzed, the comprehensive evaluation index system is established from four aspects: support parameters, quality of bolt and fittings, construction management and monitoring level, and the safety evaluation model of bolt support is constructed; the AHP and entropy weight method are combined to determine the weight of each index, and the safety evaluation system of bolt support based on AHPentropy weight method is established and its application program is developed. The safety evaluation method and application program proposed in this paper are applied to the safety evaluation of bolt support in a coal mine in Shanxi Province, and the results are in agreement with the actual situation. This article studies the correlation

    Responses and mechanisms of soil greenhouse gas fluxes to changes in precipitation intensity and duration: a meta-analysis for a global perspective

    No full text
    Although extensive manipulative experiments have been conducted to study the effects of altered precipitation intensity and duration on soil greenhouse gas (GHG, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)) fluxes, the general patterns of GHGs to altered precipitation have not been globally described across biomes. Thus, we performed a meta-analysis of 84 published studies to examine the general responses of CO2, CH4 and N2O fluxes to altered precipitation. Our results indicated that increased precipitation significantly increased N2O emissions (+154.0%) and CO2 fluxes (+112.2%) and significantly decreased CH4 uptake (-41.4%), and decreased precipitation significantly decreased N2O emissions (-64.7%) and CO2 fluxes (-8.6%) and significantly increased CH4 uptake (+32.4%). Moreover, increased precipitation significantly increased litter biomass and microbial biomass, and decreased root biomass and the root:shoot ratio. However, decreased precipitation significantly decreased litter biomass and root biomass and significantly increased root:shoot ratio. These results suggest that precipitation changes could alter the carbon distribution patterns in plants. In addition, the CO2, CH4 and N2O fluxes exhibited diverse responses to different ecosystems, durations of precipitation changes, and changes in precipitation intensity. These results demonstrate that there are many factors that regulate the responses of greenhouse gases to precipitation changes.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Long-Term Nitrogen Addition Accelerates Litter Decomposition in a <i>Larix gmelinii</i> Forest

    No full text
    Elevated atmospheric N deposition has the potential to alter litter decomposition patterns, influencing nutrient cycling and soil fertility in boreal forest ecosystems. In order to study the response mechanism of litter decomposition in Larix gmelinii forest to N deposition, we established four N addition treatments (0, 25, 50, 75 kg N ha−1 yr−1) in the Greater Khingan Mountains region. The results showed that (1) both needle and mixed leaf litter (Betula platyphylla and Larix gmelinii) exhibited distinct decomposition stages, with N addition accelerating decomposition for both litter types. The decomposition of high-quality (low C/N ratio) mixed leaf litter was faster than that of low-quality needle litter. (2) Mixed leaf litter increased the decomposition coefficients of litter with lower nutrients. (3) All N addition treatments promoted the decomposition of needle litter, while the decomposition rate of mixed leaf litter decreased under high-N treatment. (4) N addition inhibited the release of N and P in needle litter and promoted the release of N in mixed leaf litter, while high-N treatment had no positive effect on the release of C and P in mixed leaf litter. Our research findings suggest that limited nutrients in litter may be a key driving factor in regulating litter decomposition and emphasize the promoting effect of litter mixing and nitrogen addition on litter decomposition
    • …
    corecore