59 research outputs found

    Glyburide Disposition During Pregnancy

    Get PDF

    Effect of pregnancy on cytochrome P450 3a and P-glycoprotein expression and activity in the mouse: mechanisms, tissue specificity, and time course.

    Get PDF
    ABSTRACT The plasma concentrations of orally administered anti-human immunodeficiency virus protease inhibitors are significantly reduced during human and mouse pregnancy. We have shown that in the mouse, at gestational day 19, this reduction is due to increased hepatic cytochrome P450 3a (Cyp3a) protein expression and activity. In the current study, we investigated the mechanisms by which Cyp3a activity is increased by pregnancy and the time course of change in expression of Cyp3a and P-glycoprotein (P-gp) in various tissues. We found that hepatic transcripts of Cyp3a16, Cyp3a41, and Cyp3a44 were significantly increased during pregnancy, whereas those of Cyp3a11 and Cyp3a25 were significantly decreased. This resulted in a net increase in Cyp3a protein expression and activity in the liver during pregnancy. The increase in Cyp3a41 and Cyp3a44 transcripts was positively correlated (p Ͻ 0.05) with hepatocyte nuclear factor 6 and estrogen receptor-␣ transcripts. The pregnancy-related factors that transcriptionally activated mouse Cyp3a isoforms also activated the human CYP3A4 promoter in pregnant CYP3A4-promoter-luciferase transgenic (CYP3A4-tg) mice. In contrast, intestinal Cyp3a protein expression was not significantly affected by pregnancy. No change in P-gp protein expression was observed in the liver or kidney during pregnancy, although a significant decrease was observed in the placenta. Because hepatic CYP3A activity also seems to be induced during human pregnancy, the mouse (including CYP3A4-tg mouse) seems to be an excellent animal model to determine the molecular mechanisms for such an induction. To treat the pregnant woman and to prevent maternalfetal HIV-1 transmission, HIV-1-infected pregnant women are routinely prescribed anti-HIV protease inhibitors as part of their highly active antiretroviral therapy regimen The bioavailability and systemic clearance of the PIs are primarily determined by the drug-metabolizing enzymes cytochrome P450 3A4/5 (CYP3A4/5) and the drug efflux transporter P-glycoprotein (P-gp) in the small intestine and live

    Predicting P-Glycoprotein-Mediated Drug Transport Based On Support Vector Machine and Three-Dimensional Crystal Structure of P-glycoprotein

    Get PDF
    Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus, identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the pharmacokinetics, efficacy, safety, or tissue levels of drugs or drug candidates. At present, publicly available, reliable in silico models predicting P-gp substrates are scarce. In this study, a support vector machine (SVM) method was developed to predict P-gp substrates and P-gp-substrate interactions, based on a training data set of 197 known P-gp substrates and non-substrates collected from the literature. We showed that the SVM method had a prediction accuracy of approximately 80% on an independent external validation data set of 32 compounds. A homology model of human P-gp based on the X-ray structure of mouse P-gp as a template has been constructed. We showed that molecular docking to the P-gp structures successfully predicted the geometry of P-gp-ligand complexes. Our SVM prediction and the molecular docking methods have been integrated into a free web server (http://pgp.althotas.com), which allows the users to predict whether a given compound is a P-gp substrate and how it binds to and interacts with P-gp. Utilization of such a web server may prove valuable for both rational drug design and screening

    Increased glyburide clearance in the pregnant mouse model. Drug Metab Dispos 38:1403–1406. Address correspondence to:

    No full text
    c) Number of text pages: 22 Abstract Glyburide (GLB) is an oral sulfonylurea, commonly used for the treatment of gestational diabetes mellitus. It has been reported that the clearance of GLB in pregnant women is significantly higher than that in non-pregnant women. The molecular mechanism by which pregnancy increases the clearance of GLB is not known, but may be caused by increased CYP3A activity. As liver tissue from pregnant women is not readily available, in the present study, we investigated the mechanism of such pregnancy-related changes in GLB disposition in a mouse model. We demonstrated that the systemic clearance of GLB in pregnant mice was increased approximately 2-fold (p < 0.01) as compared with non-pregnant mice, a magnitude of change similar to that observed in the clinical study. Plasma protein binding of GLB in mice was not altered by pregnancy. The half-life of GLB depletion in hepatic S-9 fractions of pregnant mice was significantly shorter than that of non-pregnant mice. Moreover, GLB depletion was markedly inhibited by ketoconazole, a potent inhibitor of mouse Cyp3a, suggesting that GLB metabolism in mice is primarily mediated by hepatic Cyp3a. These data suggest that the increased systemic clearance of GLB in pregnant mice is likely caused by an increase in hepatic Cyp3a activity during pregnancy, and provide a basis for further mechanistic understanding and analysis of pregnancy-induced alterations in the disposition of GLB and drugs that are predominantly and extensively metabolized by CYP3A/Cyp3a. DMD #33837

    Breast Cancer Resistance Protein 1 Limits Fetal Distribution of Nitrofurantoin in the Pregnant Mouse

    No full text
    • …
    corecore