313 research outputs found
Replication of Impedance Identification Experiments on a Reinforcement-Learning-Controlled Digital Twin of Human Elbows
This study presents a pioneering effort to replicate human neuromechanical
experiments within a virtual environment utilising a digital human model. By
employing MyoSuite, a state-of-the-art human motion simulation platform
enhanced by Reinforcement Learning (RL), multiple types of impedance
identification experiments of human elbow were replicated on a musculoskeletal
model. We compared the elbow movement controlled by an RL agent with the motion
of an actual human elbow in terms of the impedance identified in
torque-perturbation experiments. The findings reveal that the RL agent exhibits
higher elbow impedance to stabilise the target elbow motion under perturbation
than a human does, likely due to its shorter reaction time and superior sensory
capabilities. This study serves as a preliminary exploration into the potential
of virtual environment simulations for neuromechanical research, offering an
initial yet promising alternative to conventional experimental approaches. An
RL-controlled digital twin with complete musculoskeletal models of the human
body is expected to be useful in designing experiments and validating
rehabilitation theory before experiments on real human subjects.Comment: 8 pages, 5 figures; Submitted to WCCI-202
Asymmetric cryorolling for fabrication of nanostructural aluminum sheets
Nanostructural Al 1050 sheets were produced using a novel method of asymmetric cryorolling under ratios of upper and down rolling velocities (RUDV) of 1.1, 1.2, 1.3, and 1.4. Sheets were rolled to about 0.17 mm from 1.5 mm. Both the strength and ductility of Al 1050 sheets increase with RUDVs. Tensile strength of Al sheets with the RUDV 1.4 is larger 22.3% of that for RUDV 1.1, which is 196 MPa. The TEM observations show the grain size is 360 nm when the RUDV is 1.1, and 211 nm for RUDV 1.4
Effect of Freeze-Thaw Cycle on Shear Strength of Lime-Solidified Dispersion Soils
The freeze-thaw cycle of saline soil in the seasonal frozen area will produce diseases such as frost heave and thaw settlement, road frost boiling, collapse and uneven settlement. In order to reduce the occurrence of these undesirable phenomena, it is often necessary to improve the saline soil in engineering. In this paper, the typical carbonate saline soil in the west of Jilin Province, China is taken as the research object. By adding different content of lime (0%, 3%, 6%, 9%, 12%, 15%), the change of mechanical strength of lime solidified saline soil under different freeze-thaw cycles (0, 1, 3, 6, 10, 30, 60 times) is studied. The mechanical analysis is carried out by combining particle size analysis test and SEM image. The test results show that although repeated freeze-thaw cycles make the soil structure loose and the mechanical strength greatly reduced, the soil particles agglomerate obviously after adding lime, its dispersion is restrained by the flocculation of clay colloid, and the shear strength of soil is improved by the increase of the cohesive force between clay particles, and the optimal lime mixing ratio of the saline soil in this area is 9%
Dynamics analysis on barrel considering the temporal and spatial distribution of propellant gas by numerical simulation
In terms of the excitation of barrel vibration on the motion modality of projectile during interior ballistic period, a finite element model considering the mutual coupling between projectile and barrel was established to study the dynamics. In consideration of the effects of propellant gas on dynamics response based on vibration theory, the real loading condition of propellant gas acting on barrel was defined by user-defined VDLOAD subroutine, which solved the problem of inaccurate loading and even the failure of loading of gases pressure in previous simulations. Simultaneously, the loading boundary condition was directed by the coupling process of powder combustion and projectile motion, modeled by the user-defined VUAMP subroutine. The dynamics responses of barrel with and without the radial effect of gas pressure were obtained. Moreover, with the aid of realization of radial loading of barrel, the influence of the deviation of mass center of barrel on its dynamics response was also investigated. The obtained results showed that the radial effect of gas pressure causes more violent dynamics responses and plays a non-negligible role in simulating artillery firing process. The dynamics response of barrel is sensitive to the deviation of mass center and the response increases with the increasing value of deviation
An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI
Control Flow Integrity (CFI) is one of the most
promising technique to defend Code-Reuse Attacks (CRAs).
Traditional CFI Systems and recent Context-Sensitive CFI use coarse
control flow graphs (CFGs) to analyze whether the control flow
hijack occurs, left vast space for attackers at indirect call-sites. Coarse
CFGs make it difficult to decide which target to execute at indirect
control-flow transfers, and weaken the existing CFI systems actually.
It is an unsolved problem to extract CFGs precisely and perfectly
from binaries now. In this paper, we present an algorithm to get a
more precise CFG from binaries. Parameters are analyzed at indirect
call-sites and functions firstly. By comparing counts of parameters
prepared before call-sites and consumed by functions, targets of
indirect calls are reduced. Then the control flow would be more
constrained at indirect call-sites in runtime. Combined with CCFI,
we implement our policy. Experimental results on some popular
programs show that our approach is efficient. Further analysis show
that it can mitigate COOP and other advanced attacks
Trans-Regime Structural Transition of (In3+ + Nb5+) Co-Doped Anatase TiO2 Nanocrystals under High Pressure
Chemical co-doping and high pressure reactions have been broadly used to synthesize novel materials or to tune the physicochemical properties of traditional materials. Here, we take In3+ and Nb5+ ions co-doped anatase TiO2 nanocrystals as an example and report that a combination of both a chemical and a high pressure reaction route is more powerful for the preparation of metastable polymorphs. It is experimentally demonstrated that In3+ and Nb5+ co-doping significantly changes the high-pressure reaction behaviors of anatase TiO2 nanocrystals (<10 nm) and leads to their trans-regime structural transition in terms of in situ Raman analysis, from an anatase to a baddeleyite-like phase under compressive pressures and then to an α-PbO2-like structure under decompressive pressures. This abnormal phase transition is attributed to a defect-induced heterogeneous nucleation mechanism. Furthermore, the stiffness of co-doped TiO2 nanocrystals is significantly enhanced due to the synergistic effects of co-dopants. This research not only proposes a potentially effective strategy to synthesize co-doped metastable polymorphic phases but also suggests one feasible method to improve the mechanical properties of anatase TiO2 nanocrystals
- …