202 research outputs found

    {4-[(Diphenyl­phosphino)methyl­amino]pyridinium-κP}bis­(nitrato-κO)silver(I)

    Get PDF
    In the title mononuclear complex, [Ag(C18H18N2P)(NO3)2], the metal centre is coordinated in a slightly distorted trigonal–planar geometry by the P atom of the phosphine ligand and the O atoms of the two monodentate nitrate anions. In the crystal structure, complex mol­ecules are connected by inter­molecular N—H⋯O hydrogen bonds, forming chains running parallel to the b axis

    Tetra­aqua­bis(2-methyl­benzimidazolium-1,3-diacetato-κO)zinc(II) tetra­hydrate

    Get PDF
    The asymmetric unit of the title compound, [Zn(C12H11N2O4)2(H2O)4]·4H2O, contains one-half of the complex mol­ecule and two uncoordin­ated water mol­ecules. The four water O atoms in the equatorial plane around the ZnII centre ( symmetry) form a distorted square-planar arrangement, while the distorted octa­hedral coordination geometry is completed by the O atoms of the zwitterionic 2-methyl­benzimidazolium-1,3-diacetate ligands in the axial positions. The benzimidazole ring system is planar, with a maximum deviation of 0.041 (3) Å. Intra­molecular O—H⋯O hydrogen bonding results in the formation of a non-planar six-membered ring. In the crystal structure, strong intra- and inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. π–π contacts between benzimidazole rings [centroid–centroid distance = 3.899 (1) Å] may further stabilize the structure

    Bis{N,N-bis­[(diphenyl­phosphan­yl)meth­yl]aniline-κ2 P,P′}copper(I) tetra­fluoridoborate

    Get PDF
    In the cation of the title compound, [Cu(C32H29NP2)2]BF4, the CuI atom is four-coordinated in a distorted tetra­hedral geometry by four P atoms from two N,N-bis­[(diphenyl­phosphan­yl)meth­yl]aniline ligands. In the crystal, the cations are linked by C—H⋯π inter­actions, forming chains along the a axis. Intra­molecular C—H⋯N and inter­molecular C—H⋯F hydrogen bonds are also observed

    [μ-N,N′-Bis(diphenyl­phosphinometh­yl)benzene-1,4-diamine-κ2 P:P′]bis­[(2,2′-bipyridine-κ2 N,N′)silver(I)] bis­(per­chlorate) acetone disolvate

    Get PDF
    The title complex, [Ag2(C10H8N2)2(C32H30N2P2)](ClO4)2·2CH3COCH3, is a centrosymmetric dimer with pairs of AgI atoms bridged by N,N′-bis­(diphenyl­phosphinometh­yl)ben­zene-1,4-diamine ligands. In addition, each AgI atom is coordin­ated by one chelating 2,2′-bipyridine ligand, giving a distorted trigonal coordination environment

    Pyrosequencing analysis of bacterial community changes in dental unit waterlines after chlorogenic acid treatment

    Get PDF
    IntroductionThe contamination of dental unit waterlines (DUWLs) poses a significant risk of cross-infection in dentistry. Although chemical disinfectants have been effective in reducing number of bacteria, they do have limitations.MethodsThis study aimed to investigate the potential of chlorogenic acid, a natural substance with broadspectrum antibacterial properties, for treating DUWLs. Over a period of three months, we analyzed the microbial communities in 149 DUWLs samples collected from 5 dental units using high-throughput pyrophosphate sequencing. ResultsThe results revealed that chlorogenic acid treatment had a significant impact on the microbial community profile in the DUWLs, with the most significant changes occurring within the first 15 days and stabilization observed in the last 30 days. The predominant genera detected in the samples were Bacteroides, Lactobacillus, Streptococcus, Methylobacterium, and Phreatobacter. Additionally, the relative abundance of certain beneficial bacteria, such as Alloprevotella, Roseburia, and Blautia, increased, while the presence of opportunistic pathogens like Mycobacteria significantly decreased. The functional prediction analysis using the KEGG database indicated a decrease in the pathogenicity of the bacterial community in the DUWLs following chlorogenic acid treatment. DiscussionThis study introduces a novel approach for the prevention and treatment of infections associated with dental care

    Prognostic significance of the novel nutrition-inflammation marker of lymphocyte–C-reactive protein ratio in patients with nasopharyngeal carcinoma receiving concurrent chemoradiotherapy

    Get PDF
    BackgroundRecent studies indicate that the novel lymphocyte–C-reactive protein ratio (LCR) is strongly associated with the survival of various tumors, but its prognostic value in nasopharyngeal carcinoma (NPC) is understudied. This study aimed to explore the relationship between LCR and overall survival (OS) in NPC and develop a predictive model.MethodsA total of 841 NPC patients who received concurrent chemoradiotherapy (CCRT) between January 2010 and December 2014 were retrospectively enrolled and randomly divided into a training cohort (n = 589) and a validation cohort (n = 252), and 122 patients between January 2015 and March 2015 were included as an additional validation cohort. Univariate and multivariate Cox analyses were performed to identify variables associated with OS and construct a predictive nomogram. The predictive accuracy of the nomogram was evaluated and independently validated.ResultsThe LCR score differentiated NPC patients into two groups with distinct prognoses (HR = 0.53; 95% CI: 0.32–0.89, P = 0.014). Multivariate analysis showed that age, T stage, N stage, EBV-DNA status, and LCR score were independently associated with OS, and a predictive nomogram was developed. The nomogram had a good performance for the prediction of OS [C-index = 0.770 (95% CI: 0.675–0.864)]. and outperformed the traditional staging system [C-index = 0.589 (95% CI: 0.385–0.792)]. The results were internally and additionally validated using independent cohorts.ConclusionThe pretreatment LCR could independently predict the overall survival in NPC patients. A novel LCR-based prognostic model of an easy-to-use nomogram was established, and it outperformed the conventional staging system in terms of predictive power. Further external verification remains necessary

    One-Step Synthesis of Monodisperse In-Doped ZnO Nanocrystals

    Get PDF
    A method for the synthesis of high quality indium-doped zinc oxide (In-doped ZnO) nanocrystals was developed using a one-step ester elimination reaction based on alcoholysis of metal carboxylate salts. The resulting nearly monodisperse nanocrystals are well-crystallized with typically crystal structure identical to that of wurtzite type of ZnO. Structural, optical, and elemental analyses on the products indicate the incorporation of indium into the host ZnO lattices. The individual nanocrystals with cubic structures were observed in the 5% In–ZnO reaction, due to the relatively high reactivity of indium precursors. Our study would provide further insights for the growth of doped oxide nanocrystals, and deepen the understanding of doping process in colloidal nanocrystal syntheses

    Genetic Regulation of the Thymic Stromal Lymphopoietin (TSLP)/TSLP Receptor (TSLPR) Gene Expression and Influence of Epistatic Interactions Between IL-33 and the TSLP/TSLPR Axis on Risk of Coronary Artery Disease

    Get PDF
    The thymic stromal lymphopoietin (TSLP)/TSLP receptor (TSLPR) axis is involved in multiple inflammatory immune diseases, including coronary artery disease (CAD). To explore the causal relationship between this axis and CAD, we performed a three-stage case-control association analysis with 3,628 CAD cases and 3,776 controls using common variants in the genes TSLP, interleukin 7 receptor (IL7R), and TSLPR. Three common variants in the TSLP/TSLPR axis were significantly associated with CAD in a Chinese Han population [rs3806933T in TSLP, Padj = 4.35 × 10−5, odds ratio (OR) = 1.18; rs6897932T in IL7R, Padj = 1.13 × 10−7, OR = 1.31; g.19646A>GA in TSLPR, Padj = 2.04 × 10−6, OR = 1.20]. Reporter gene analysis demonstrated that rs3806933 and rs6897932 could influence TSLP and IL7R expression, respectively. Furthermore, the “T” allele of rs3806933 might increase plasma TSLP levels (R2 = 0.175, P < 0.01). In a stepwise procedure, the risk for CAD increased by nearly fivefold compared with the maximum effect of any single variant (Padj = 6.99 × 10−4, OR = 4.85). In addition, the epistatic interaction between TSLP and IL33 produced a nearly threefold increase in the risk of CAD in the combined model of rs3806933TT-rs7025417TT (Padj = 3.67 × 10−4, OR = 2.98). Our study illustrates that the TSLP/TSLPR axis might be involved in the pathogenesis of CAD through upregulation of mRNA or protein expression of the referenced genes and might have additive effects on the CAD risk when combined with IL-33 signaling
    corecore