1,721 research outputs found

    InitialGAN: A Language GAN with Completely Random Initialization

    Full text link
    Text generative models trained via Maximum Likelihood Estimation (MLE) suffer from the notorious exposure bias problem, and Generative Adversarial Networks (GANs) are shown to have potential to tackle this problem. Existing language GANs adopt estimators like REINFORCE or continuous relaxations to model word distributions. The inherent limitations of such estimators lead current models to rely on pre-training techniques (MLE pre-training or pre-trained embeddings). Representation modeling methods which are free from those limitations, however, are seldomly explored because of their poor performance in previous attempts. Our analyses reveal that invalid sampling methods and unhealthy gradients are the main contributors to such unsatisfactory performance. In this work, we present two techniques to tackle these problems: dropout sampling and fully normalized LSTM. Based on these two techniques, we propose InitialGAN whose parameters are randomly initialized in full. Besides, we introduce a new evaluation metric, Least Coverage Rate, to better evaluate the quality of generated samples. The experimental results demonstrate that InitialGAN outperforms both MLE and other compared models. To the best of our knowledge, it is the first time a language GAN can outperform MLE without using any pre-training techniques

    A hybrid representation based simile component extraction

    Get PDF
    Simile, a special type of metaphor, can help people to express their ideas more clearly. Simile component extraction is to extract tenors and vehicles from sentences. This task has a realistic significance since it is useful for building cognitive knowledge base. With the development of deep neural networks, researchers begin to apply neural models to component extraction. Simile components should be in cross-domain. According to our observations, words in cross-domain always have different concepts. Thus, concept is important when identifying whether two words are simile components or not. However, existing models do not integrate concept into their models. It is difficult for these models to identify the concept of a word. What’s more, corpus about simile component extraction is limited. There are a number of rare words or unseen words, and the representations of these words are always not proper enough. Exiting models can hardly extract simile components accurately when there are low-frequency words in sentences. To solve these problems, we propose a hybrid representation-based component extraction (HRCE) model. Each word in HRCE is represented in three different levels: word level, concept level and character level. Concept representations (representations in concept level) can help HRCE to identify the words in cross-domain more accurately. Moreover, with the help of character representations (representations in character levels), HRCE can represent the meaning of a word more properly since words are consisted of characters and these characters can partly represent the meaning of words. We conduct experiments to compare the performance between HRCE and existing models. The experiment results show that HRCE significantly outperforms current models

    A modified SST k-? turbulence model to predict the steady and unsteady sheet cavitation on 2D and 3D hydrofoils

    Full text link
    The paper presents a study of using a modified SST (Shear-Stress Transport) k-? model with a multi-phase mixture flow RANS solver to predict the steady and unsteady cavitating flows around 2D and 3D hydrofoils. Based on Reboud et al [6] s idea of modifying turbulent viscosity for a RNG k-­ model, a modification is applied to a SST k-? model in the present work. The cavitation is modeled by Schnerr-Sauer s cavitation model [16]. First, results of 2D NACA0015 foil at two cavitation numbers, ? =1.6 (stable sheet cavitation) and ?=1.0 (unsteady with shedding) are compared for different grids and with available experiment data. Then, the problem of the standard SST model in predicting unsteady cavitation is discussed. Finally the results for a 3D twisted hydrofoil are compared with the experiment by Foeth and Terwisga [3]. It is found that with the modified SST k-? model the RANS solver is able to predict the essential features like development of re-entrant jets, the pinch-off, the shedding of vortex and cloud cavities for the 2D NACA0015 foil at ? =1.0. For the case at ? =1.6, the model predicts a high frequency fluctuating sheet cavity with minor shedding at its closure. Compared with the standard SST model, the global quantities like lift, drag, and shedding frequency predicted by the modified model are closer to the experimental data, although considerable discrepancy with the experiment data is noted for the unsteady case at ? =1.0. In addition, a special type of secondary cavities, developed downstream an upstream-moving collapse cavity and termed as vortex group cavitation by Bark et al [1], appears to be observable in the simulation at this condition. The existence of this type of cavity has been reconfirmed in a recent experiment in the SSPA s cavitation tunnel.http://deepblue.lib.umich.edu/bitstream/2027.42/84288/1/CAV2009-final107.pd

    Cavitation dynamics and underwater radiated noise signature of a ship with a cavitating propeller

    Get PDF
    The paper presents SSPA’s work in the EU project AQUO to predict underwater radiated noise (URN) generated by a coastal tanker with a cavitating propeller. A CFD method, consisting of a multi-phase Delayed Detached Eddy Simulation (DDES) and a Ffowcs Williams-Hawkings (FWH) acoustic analogy, is applied to predict the cavitation, pressure pulses and radiated noise for the ship at model and full scale. In comparison with the data obtained from the model test and full scale measurement, it is found that the predicted sheet cavity correlates quite well with the observed ones in the experiment and sea trial. Some success is made in predicting the collapse and rebound of tip vortex cavitation (TVC) at model scale, yet the extension of TVC is under-predicted.The predicted pressure pulses agree reasonably well with the measured ones at the first three harmonics, deviation becomes larger at higher harmonics.The tonal noise has fairly good agreement with the measured signal at both scales up to 5th harmonics. The simulation however under-predicts part of broadband noise that is caused by the TVC, mainly due to an under-resolution of the flow in the tip region and the propeller wake. The agreement with the data for the model scale case is slightly better than that for the full scale case

    Filament L1482 in the California molecular cloud

    Full text link
    Aims. The process of gravitational fragmentation in the L1482 molecular filament of the California molecular cloud is studied by combining several complementary observations and physical estimates. We investigate the kinematic and dynamical states of this molecular filament and physical properties of several dozens of dense molecular clumps embedded therein. Methods. We present and compare molecular line emission observations of the J=2--1 and J=3--2 transitions of 12CO in this molecular complex, using the KOSMA 3-meter telescope. These observations are complemented with archival data observations and analyses of the 13CO J=1--0 emission obtained at the Purple Mountain Observatory 13.7-meter radio telescope at Delingha Station in QingHai Province of west China, as well as infrared emission maps from the Herschel Space Telescope online archive, obtained with the SPIRE and PACS cameras. Comparison of these complementary datasets allow for a comprehensive multi-wavelength analysis of the L1482 molecular filament. Results. We have identified 23 clumps along the molecular filament L1482 in the California molecular cloud. All these molecular clumps show supersonic non-thermal gas motions. While surprisingly similar in mass and size to the much better known Orion molecular cloud, the formation rate of high-mass stars appears to be suppressed in the California molecular cloud relative to that in the Orion molecular cloud based on the mass-radius threshold derived from the static Bonnor Ebert sphere. Our analysis suggests that these molecular filaments are thermally supercritical and molecular clumps may form by gravitational fragmentation along the filament. Instead of being static, these molecular clumps are most likely in processes of dynamic evolution.Comment: 10 pages, 9 figures, 2 tables, accepted to Astronomy and Astrophysic

    QED effects on phase transition and Ruppeiner geometry of Euler-Heisenberg-AdS black holes

    Full text link
    Taking the quantum electrodynamics (QED) effect into account, we study the black hole phase transition and Ruppeiner geometry for the Euler-Heisenberg anti-de Sitter black hole in the extended phase space. For negative and small positive QED parameter, we observe a small/large black hole phase transition and reentrant phase transition, respectively. While a large positive value of the QED parameter ruins the phase transition. The phase diagrams for each case are explicitly exhibited. Then we construct the Ruppeiner geometry in the thermodynamic parameter space. Different features of the corresponding scalar curvature are shown for both the small/large black hole phase transition and reentrant phase transition cases. Of particular interest is that an additional region of positive scalar curvature indicating dominated repulsive interaction among black hole microstructure is present for the black hole with a small positive QED parameter. Furthermore, the universal critical phenomena are also observed for the scalar curvature of the Ruppeiner geometry. These results indicate that the QED parameter has a crucial influence on the black hole phase transition and microstructure.Comment: 19 pages, 14 figure

    GRB 120729A: External Shock Origin for Both the Prompt Gamma-Ray Emission and Afterglow

    Get PDF
    Gamma-ray burst (GRB) 120729A was detected by Swift/BAT and Fermi/GBM, and then rapidly observed by Swift/XRT, Swift/UVOT, and ground-based telescopes. It had a single long and smooth \gamma-ray emission pulse, which extends continuously to the X-rays. We report Lick/KAIT observations of the source, and make temporal and spectral joint fits of the multiwavelength light curves of GRB 120729A. It exhibits achromatic light-curve behavior, consistent with the predictions of the external shock model. The light curves are decomposed into four typical phases: onset bump (Phase I), normal decay (Phase II), shallow decay (Phase III), and post-jet break (Phase IV). The spectral energy distribution (SED) evolves from prompt \gamma-ray emission to the afterglow with photon index from Γγ=1.36 to Γ≈1.75. There is no obvious evolution of the SED during the afterglow. ...(Please see article full tet for complete abstract.
    • …
    corecore