13 research outputs found

    Establishing the metabolic network of isoquinoline alkaloids from the Macleaya genus

    No full text
    Qing, Zhixing, Yan, Fangqin, Huang, Peng, Zeng, Jianguo (2021): Establishing the metabolic network of isoquinoline alkaloids from the Macleaya genus. Phytochemistry (112696) 185: 1-8, DOI: 10.1016/j.phytochem.2021.112696, URL: http://dx.doi.org/10.1016/j.phytochem.2021.11269

    Effect of Natural Antioxidants from Marigolds (Tagetes erecta L.) on the Oxidative Stability of Soybean Oil

    No full text
    In recent years, synthetic antioxidants that are widely used in foods have been shown to cause detrimental health effects, and there has been growing interest in antioxidants realised from natural plant extracts. In this study, we investigate the potential effects of natural antioxidant components extracted from the forage plant marigold on the oxidative stability of soybean oil. First, HPLC-Q-TOF-MS/MS was used with 1,1-diphenyl-2-picrylhydrazyl (DPPH) to screen and identify potential antioxidant components in marigold. Four main antioxidant components were identified, including quercetagetin-7-O-glucoside (1), quercetagetin (2), quercetin (3) and patuletin (4). Among them, quercetagetin (QG) exhibited the highest content and the strongest DPPH radical scavenging activity and effectively inhibited the production of oxidation products in soybean oil during accelerated oxidation, as indicated by reductions in the peroxide value (PV) and acid value (AV). Then, the fatty acids and volatile compounds of soybean oil were determined with gas chromatography–mass spectrometry (GC-MS) and headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME-GC-MS). A total of 108 volatile components, including 16 alcohols, 23 aldehydes, 25 ketones, 4 acids, 15 esters, 18 hydrocarbons, and 7 other compounds, were identified. QG significantly reduced the content and number of aldehydes and ketones, whereas the formation of acids and hydrocarbons was completely prevented. In addition, the fatty acid analysis demonstrated that QG significantly inhibited oxidation of unsaturated fatty acids. Consequently, QG was identified as a potential, new natural antioxidant that is believed to be safe, effective and economical, and it may have potential for use in plant extracts feed additives

    Metal-Free Photoredox Catalyzed Cyclization of O-(2,4-Dinitrophenyl)oximes to Phenanthridines

    No full text
    A metal-free visible-light photoredox-catalyzed intermolecular cyclization reaction of O-2,4-dinitrophenyl oximes to phenanthridines was developed. In this study, the organic dye eosin Y and i-Pr2NEt were used as photocatalyst and terminal reductant, respectively. The oxime substrates were transformed into iminyl radical intermediates by single-electron reduction, which then underwent intermolecular homolytic aromatic substitution (HAS) reactions to give phenanthridine derivatives

    Research on Digital Twin: Model, problem and progress

    No full text
    In recent years, the research on Digital Twin is in the ascendant. As a new paradigm or concept, it shows great potential. However, the connotation and scope of the Digital Twin concept is still uncertain, especially the Digital Twin Model definition is not clear.According to the pattern category, the Digital Twin Model can be divided into general model and special model, in which the special model is still the focus of current research, and the research content is mainly embodied in the use of Digital Twin method to model specific projects. It also includes concept for developing specialized models. These specific projects in addition to the traditional manufacturing related to parts measurement and quality control, manufacturing, design and work processes, as well as system management, but also in the field of biomedical applications and applications for petroleum engineering and so on. There are many tools and techniques for developing special models, such as general industrial software, special industrial software, simulation platform and self-developed secondary development tools, etc.The research object of the Digital Twin general model is not specific to a specific project, but how to represent the controlled elements of the model as a group of common objects and the relationships between these objects. This provides a consistent approach to the management and communication of controlled elements between different environments. The research on the general model is mainly divided into the conceptual research and the model implementation method; the research heat of the two directions is almost the same. Conceptual research ranges from product lifecycle management to system behavior description, such as general system behavior and system reconfiguration, and to product configuration management, to specific workflow, such as design methods, manufacturing systems and manufacturing processes. The research content is relatively divergent, and there is no particularly prominent hot spot. The research of Digital Twin general model implementation is mainly reflected in the modeling language construction, the model development methods exploration, the specific tools usage, the Meta-model concept implantation and the model algorithm exploration.Digital Twin Model is one of the core areas of Digital Twin research. Its future research focuses on how to integrate the external features and intrinsic properties from different Digital Twin artifacts into a model with interoperability, interactivity and scalability for more efficiently realizing the information flow between the physical world and the digital world, thus achieving the universal Digital Twin application, and then supporting the CPS (Cyber Physical Space) and CPPS (Cyber Physical Production System) construction. To this end, the next problem in the Digital Twin Model needing to be solved first is how to dock the standard reference architecture, such as the RAMI4.0 (Reference Architecture Model Industrial 4.0) proposed by Germany and the IMSA (Intelligent Manufacturing System Architecture) by China, etc. Secondly, the Digital Twin Model needs a unified method to describe and it also needs consistent conclusions, in order to standardize the models established by independent development, thus improving the interoperability and scalability of the model. Otherwise, the performance of the model will decrease significantly as the system scales raise. Thirdly, the research on China's Digital Twin Model requires the support of domestic professional industrial software and modeling software, so that the Chinese scholars can carry out in-depth research that is more in line with national conditions

    Systematic Detection and Identification of Bioactive Ingredients from Citrus aurantium L. var. amara Using HPLC-Q-TOF-MS Combined with a Screening Method

    No full text
    Bitter orange, Citrus aurantium L. var. amara (CAVA), is an important crop and its flowers and fruits are widely used in China as a food spice, as well as in traditional Chinese medicine, due to its health-promoting properties. The secondary metabolites that are present in plant-derived foods or medicines are, in part, responsible for the health benefits and desirable flavor profiles. Nevertheless, detailed information about the bioactive ingredients in CAVA is scarce. Therefore, this study was aimed at exploring the phytochemicals of CAVA by high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). Here, a systematic screening method combined with HPLC-Q-TOF-MS was presented. This technique was used to systematically screen metabolites, primarily from the complex matrix of CAVA, and to identify these compounds by their exact masses, characteristic fragment ions, and fragmentation behaviors. A total of 295 metabolites were screened by the screening method and 89 phytochemicals were identified in the flowers, fruits, roots, leaves, and branches of CAVA. For the first time, 69 phytochemicals (flavonoids, alkaloids, terpenoids, etc.) were reported from CAVA. The results highlight the importance of CAVA as a source of secondary metabolites in the food, medicine, and nutraceutical industries

    Impaired MicroRNA Processing Facilitates Breast Cancer Cell Invasion by Upregulating Urokinase-Type Plasminogen Activator Expression

    No full text
    Global mature microRNA (miRNA) expression is downregulated in cancers, and impaired miRNA processing enhances cancer cell proliferation. These findings indicate that the miRNA system generally serves as a negative regulator during cancer progression. In this study, we investigated the role of the miRNA system in cancer cell invasion by determining the effect of damaging miRNA processing on invasion-essential urokinase-type plasminogen activator (uPA) expression in breast cancer cells. Short hairpin RNAs specific for Drosha, DGCR8, and Dicer, key components of miRNA processing machinery, were introduced into 2 breast cancer cell lines with high uPA expression and 2 lines with poor uPA expression. Knockdown of Drosha, DGCR8, or Dicer led to even higher uPA expression in cells with high uPA expression, while it was unable to increase uPA level in cells with poor uPA expression, suggesting that the miRNA system most likely impacts uPA expression as a facilitator. In cells with high uPA expression, knockdown of Drosha, DGCR8, or Dicer substantially increased in vitro invasion, and depleting uPA abrogated enhanced invasion. These results thus link the augmented invasion conferred by impaired miRNA processing to upregulated uPA expression. uPA mRNA was a direct target of miR-193a/b and miR-181a, and a higher uPA level in cells with impaired miRNA processing resulted from less mature miR-193a/b and miR-181a processed from their respective primary miRNAs. Importantly, the levels of mature miR-193a, miR-193b, and miR-181a, but not their respective primary miRNAs, were lower in high uPA-expressing cells compared to cells with low uPA expression, and this apparently attributed to lower Drosha/DGCR8 expression in high uPA-expressing cells. This study suggests that less efficient miRNA processing can be a mechanism responsible for reduced levels of mature forms of tumor-suppressive miRNAs frequently detected in cancers

    Identification of the Impurities in Bopu Powder® and Sangrovit® by LC-MS Combined with a Screening Method

    No full text
    Bopu powder® and Sangrovit® were developed from Macleayacordata and are widely used in agriculture and animal husbandry, but their impurities have been rarely reported in the literature. Impurity analysis is of great importance to the quality and safety of veterinary drugs. In this study, high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS) combined with a screening method was used to screen and characterize the impurities in Bopu powder® and Sangrovit®. A total of 58 impurities were screened from Bopu powder® and Sangrovit® using the screening strategies, of which 39 were identified by their accurate m/z value, characteristic MS/MS data, and fragmentation pathways of references. This established method was used for impurity analysis for the first time and proved to be a useful and rapid tool to screen and identify the impurities of Bopu powder® and Sangrovit®, especially for those at trace levels in a complex sample. In addition, this study marks the first comprehensive research into impurities in these two products and has great significance for the systematic detection of impurities in other plant-derived drugs
    corecore