55 research outputs found
The RBP-JÎş Binding Sites within the RTA Promoter Regulate KSHV Latent Infection and Cell Proliferation
Kaposi's sarcoma-associated herpesvirus (KSHV) is tightly linked to at least two lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). However, the development of KSHV-mediated lymphoproliferative disease is not fully understood. Here, we generated two recombinant KSHV viruses deleted for the first RBP-JÎş binding site (RTA1st) and all three RBP-JÎş binding sites (RTAall) within the RTA promoter. Our results showed that RTA1st and RTAall recombinant viruses possess increased viral latency and a decreased capability for lytic replication in HEK 293 cells, enhancing colony formation and proliferation of infected cells. Furthermore, recombinant RTA1st and RTAall viruses showed greater infectivity in human peripheral blood mononuclear cells (PBMCs) relative to wt KSHV. Interestingly, KSHV BAC36 wt, RTA1st and RTAall recombinant viruses infected both T and B cells and all three viruses efficiently infected T and B cells in a time-dependent manner early after infection. Also, the capability of both RTA1st and RTAall recombinant viruses to infect CD19+ B cells was significantly enhanced. Surprisingly, RTA1st and RTAall recombinant viruses showed greater infectivity for CD3+ T cells up to 7 days. Furthermore, studies in Telomerase-immortalized human umbilical vein endothelial (TIVE) cells infected with KSHV corroborated our data that RTA1st and RTAall recombinant viruses have enhanced ability to persist in latently infected cells with increased proliferation. These recombinant viruses now provide a model to explore early stages of primary infection in human PBMCs and development of KSHV-associated lymphoproliferative diseases
Single Molecule Analysis of Replicated DNA Reveals the Usage of Multiple KSHV Genome Regions for Latent Replication
Kaposi's sarcoma associated herpesvirus (KSHV), an etiologic agent of Kaposi's sarcoma, Body Cavity Based Lymphoma and Multicentric Castleman's Disease, establishes lifelong latency in infected cells. The KSHV genome tethers to the host chromosome with the help of a latency associated nuclear antigen (LANA). Additionally, LANA supports replication of the latent origins within the terminal repeats by recruiting cellular factors. Our previous studies identified and characterized another latent origin, which supported the replication of plasmids ex-vivo without LANA expression in trans. Therefore identification of an additional origin site prompted us to analyze the entire KSHV genome for replication initiation sites using single molecule analysis of replicated DNA (SMARD). Our results showed that replication of DNA can initiate throughout the KSHV genome and the usage of these regions is not conserved in two different KSHV strains investigated. SMARD also showed that the utilization of multiple replication initiation sites occurs across large regions of the genome rather than a specified sequence. The replication origin of the terminal repeats showed only a slight preference for their usage indicating that LANA dependent origin at the terminal repeats (TR) plays only a limited role in genome duplication. Furthermore, we performed chromatin immunoprecipitation for ORC2 and MCM3, which are part of the pre-replication initiation complex to determine the genomic sites where these proteins accumulate, to provide further characterization of potential replication initiation sites on the KSHV genome. The ChIP data confirmed accumulation of these pre-RC proteins at multiple genomic sites in a cell cycle dependent manner. Our data also show that both the frequency and the sites of replication initiation vary within the two KSHV genomes studied here, suggesting that initiation of replication is likely to be affected by the genomic context rather than the DNA sequences
Kaposi's Sarcoma Herpesvirus Upregulates Aurora A Expression to Promote p53 Phosphorylation and Ubiquitylation
Aberrant expression of Aurora A kinase has been frequently implicated in many cancers and contributes to chromosome instability and phosphorylation-mediated ubiquitylation and degradation of p53 for tumorigenesis. Previous studies showed that p53 is degraded by Kaposi's sarcoma herpesvirus (KSHV) encoded latency-associated nuclear antigen (LANA) through its SOCS-box (suppressor of cytokine signaling, LANASOCS) motif-mediated recruitment of the EC5S ubiquitin complex. Here we demonstrate that Aurora A transcriptional expression is upregulated by LANA and markedly elevated in both Kaposi's sarcoma tissue and human primary cells infected with KSHV. Moreover, reintroduction of Aurora A dramatically enhances the binding affinity of p53 with LANA and LANASOCS-mediated ubiquitylation of p53 which requires phosphorylation on Ser215 and Ser315. Small hairpin RNA or a dominant negative mutant of Aurora A kinase efficiently disrupts LANA-induced p53 ubiquitylation and degradation, and leads to induction of p53 transcriptional and apoptotic activities. These studies provide new insights into the mechanisms by which LANA can upregulate expression of a cellular oncogene and simultaneously destabilize the activities of the p53 tumor suppressor in KSHV-associated human cancers
Centralizing Trends and Pollution Law Enforcement in China
This article analyses centralizing trends that may be able to reduce the negative influence of local protectionism on environmental law enforcement in China. The article finds that as centralizing trends unfolded, enforcement over time has become stricter and more frequent, however with only minor effects in reducing pollution. Moreover it finds a situation of uneven enforcement with richer and more urbanized areas having much stronger and more frequent enforcement than inland areas. Centralizing trends may thus have spurred stronger enforcement, but concurrently allowed for an uneven enforcement. At the same time, the article finds a continued local influence, keeping enforcement too weak to have much effect in reducing pollution and allowing for local interests to shape enforcement into unequal outcomes
Phase equilibria and clustering in size-asymmetric primitive model electrolytes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
- …