68 research outputs found

    Experiments on bright field and dark field high energy electron imaging with thick target material

    Full text link
    Using a high energy electron beam for the imaging of high density matter with both high spatial-temporal and areal density resolution under extreme states of temperature and pressure is one of the critical challenges in high energy density physics . When a charged particle beam passes through an opaque target, the beam will be scattered with a distribution that depends on the thickness of the material. By collecting the scattered beam either near or off axis, so-called bright field or dark field images can be obtained. Here we report on an electron radiography experiment using 45 MeV electrons from an S-band photo-injector, where scattered electrons, after interacting with a sample, are collected and imaged by a quadrupole imaging system. We achieved a few micrometers (about 4 micrometers) spatial resolution and about 10 micrometers thickness resolution for a silicon target of 300-600 micron thickness. With addition of dark field images that are captured by selecting electrons with large scattering angle, we show that more useful information in determining external details such as outlines, boundaries and defects can be obtained.Comment: 7pages, 7 figure

    Research on an online self-organizing radial basis function neural network

    Get PDF
    A new growing and pruning algorithm is proposed for radial basis function (RBF) neural network structure design in this paper, which is named as self-organizing RBF (SORBF). The structure of the RBF neural network is introduced in this paper first, and then the growing and pruning algorithm is used to design the structure of the RBF neural network automatically. The growing and pruning approach is based on the radius of the receptive field of the RBF nodes. Meanwhile, the parameters adjusting algorithms are proposed for the whole RBF neural network. The performance of the proposed method is evaluated through functions approximation and dynamic system identification. Then, the method is used to capture the biochemical oxygen demand (BOD) concentration in a wastewater treatment system. Experimental results show that the proposed method is efficient for network structure optimization, and it achieves better performance than some of the existing algorithms

    The Ninth Visual Object Tracking VOT2021 Challenge Results

    Get PDF
    acceptedVersionPeer reviewe

    Robotic Micropipette Aspiration for Multiple Cells

    No full text
    As there are significant variations of cell elasticity among individual cells, measuring the elasticity of batch cells is required for obtaining statistical results of cell elasticity. At present, the micropipette aspiration (MA) technique is the most widely used cell elasticity measurement method. Due to a lack of effective cell storage and delivery methods, the existing manual and robotic MA methods are only capable of measuring a single cell at a time, making the MA of batch cells low efficiency. To address this problem, we developed a robotic MA system capable of storing multiple cells with a feeder micropipette (FM), picking up cells one-by-one to measure their elasticity with a measurement micropipette (MM). This system involved the following key techniques: Maximum permissible tilt angle of MM and FM determination, automated cell adhesion detection and cell adhesion break, and automated cell aspiration. The experimental results demonstrated that our system was able to continuously measure more than 20 cells with a manipulation speed quadrupled in comparison to existing methods. With the batch cell measurement ability, cell elasticity of pig ovum cultured in different environmental conditions was measured to find optimized culturing protocols for oocyte maturation

    Studies on New Activities of Enantiomers of 2-(2-Hydroxypropanamido) Benzoic Acid: Antiplatelet Aggregation and Antithrombosis.

    No full text
    R-/S-2-(2-Hydroxypropanamido) benzoic acid (R-/S-HPABA), a marine-derived anti-inflammatory drug, however, the antiplatelet and antithrombotic effects have not been investigated. In this paper, the in vitro antiplatelet activities and in vivo antithrombotic effects of R-/S-HPABA were investigated, for the first time. The effects of R-/S-HPABA on platelet aggregation induced by adenosine diphosphate (ADP), collagen (COLL) and arachidonic acid (AA) were evaluated. In addition, the in vivo bleeding time, clotting time, collagen-epinephrine induced pulmonary thrombosis and common carotid artery thrombosis were also investigated in rats. R-/S-HPABA significantly inhibited ADP, COLL and AA induced platelet aggregation in rabbit platelet rich plasma in vitro compared with control group, to a degree similar to that of aspirin. Besides, R-/S-HPABA prolonged bleeding time and clotting time as well as increased the recovery rate obviously in pulmonary thrombosis. Moreover, the level of thromboxane B2 (TXB2) was decreased while the production of 6-keto-prostaglandin F1α (6-keto-PGF1α) was increased markedly by R-/S-HPABA. Furthermore, R-/S-HPABA reduced carotid artery thrombosis weight. These results illustrated that R-/S-HPABA could be a potent antiplatelet aggregation and antithrombotic agent

    Evaluation of automated systems for aminoglycosides and fluoroquinolones susceptibility testing for Carbapenem-resistant Enterobacteriaceae

    No full text
    Abstract Background Automated systems (MicroScan WalkAway 96 Plus, Phoenix 100, and Vitek 2 Compact) are widely used in clinical laboratories nowadays. The aim of this study is to evaluate the performance of these three systems for susceptibility testing of aminoglycosides and fluoroquinolones against Carbapenem-resistant Enterobacteriaceae (CRE). Methods A total of 75 CRE isolates were used in this study. Quinolone resistance determinants (QRDs) (qnrA, qnrB, qnrC, qnrD, qnrS, aac(6′)-Ib-cr, oqxAB and qepA) and aminoglycoside resistance determinants (ARDs) (aac(6′)-Ib, armA, npmA, rmtA, rmtB, rmtC, rmtD and rmtE) of these CRE were screened by PCR. The MICs of aminoglycosides (gentamicin and amikacin) and fluoroquinolones (ciprofloxacin and levofloxacin) to CRE obtained with the automated systems were compared with the reference method (agar dilution method). Results Totally, 97.3% (73/75) of CRE harbored QRDs. The qnr gene was the most common QRD determinant identified in 68 (96.7%), followed by aac (6′)-Ib-cr in 56 (74.7%), oqxAB in 23 (30.7%), and qepA in 2 (2.7%), respectively. 22.7% (17/75) of CRE harbored ARD determinants. rmtA, rmtB and npmA were identified among these isolates in 6 (8.0%), 6 (8.0%) and 5 (6.7%), respectively. A total of 900 results were obtained in this study. Overall, the total error rate was 9.89%. Twenty-eight very major errors (3.11%), 22 major errors (2.44%) and 39 minor errors (4.33%) were identified against agar dilution method. The very major errors were almost evenly distributed between results for fluoroquinolones (2.89%) and aminoglycosides (3.33%), while the major errors and minor errors were more commonly found in the results of fluoroquinolones (3.11% and 6.44%, respectively) than aminoglycosides (1.78% and 2.22%, respectively). Conclusions Our study shows that testing difficulties in susceptibility testing do exist in automated systems. We suggest clinical laboratories using automated systems should consider using a second, independent antimicrobial susceptibility testing method to validate aminoglycosides and fluoroquinolones susceptibility

    Mechanical Characterization and Modelling of Subcellular Components of Oocytes

    No full text
    The early steps of embryogenesis are controlled exclusively by the quality of oocyte that linked closely to its mechanical properties. The mechanical properties of an oocyte were commonly characterized by assuming it was homogeneous such that the result deviated significantly from the true fact that it was composed of subcellular components. In this work, we accessed and characterized the subcellular components of the oocytes and developed a layered high-fidelity finite element model for describing the viscoelastic responses of an oocyte under loading. The zona pellucida (ZP) and cytoplasm were isolated from an oocyte using an in-house robotic micromanipulation platform and placed on AFM to separately characterizing their mechanical profiling by analyzing the creep behavior with the force clamping technique. The spring and damping parameters of a Kelvin–Voigt model were derived by fitting the creeping curve to the model, which were used to define the shear relaxation modulus and relaxation time of ZP or cytoplasm in the ZP and cytoplasm model. In the micropipette aspiration experiment, the model was accurate sufficiently to deliver the time-varying aspiration depth of the oocytes under the step negative pressure of a micropipette. In the micropipette microinjection experiment, the model accurately described the intracellular strain introduced by the penetration. The developed oocyte FEM model has implications for further investigating the viscoelastic responses of the oocytes under different loading settings
    corecore