24 research outputs found

    VCAM-1/α4β1 Integrin Interaction is Crucial for Prompt Recruitment of Immune T Cells into the Brain During the Early Stage of Reactivation of Chronic Infection with \u3cem\u3eToxoplasma gondii\u3c/em\u3e to Prevent Toxoplasmic Encephalitis

    Get PDF
    Reactivation of chronic infection with Toxoplasma gondii can cause life-threatening toxoplasmic encephalitis in immunocompromised individuals. We examined the role of VCAM-1/α4β1 integrin interaction in T cell recruitment to prevent reactivation of the infection in the brain. SCID mice were infected and treated with sulfadiazine to establish a chronic infection. VCAM-1 and ICAM-1 were the endothelial adhesion molecules detected on cerebral vessels of the infected SCID and wild-type animals. Immune T cells from infected wild-type mice were treated with anti-α4 integrin or control antibodies and transferred into infected SCID or nude mice, and the animals received the same antibody every other day. Three days later, sulfadiazine was discontinued to initiate reactivation of infection. Expression of mRNAs for CD3δ, CD4, CD8β, gamma interferon (IFN-γ), and inducible nitric oxide synthase (NOS2) (an effector molecule to inhibit T. gondii growth) and the numbers of CD4+ and CD8+ T cells in the brain were significantly less in mice treated with anti-α4 integrin antibody than in those treated with control antibody at 3 days after sulfadiazine discontinuation. At 6 days after sulfadiazine discontinuation, cerebral tachyzoite-specific SAG1 mRNA levels and numbers of inflammatory foci associated with tachyzoites were markedly greater in anti-α4 integrin antibody-treated than in control antibody-treated animals, even though IFN-γ and NOS2 mRNA levels were higher in the former than in the latter. These results indicate that VCAM-1/α4β1 integrin interaction is crucial for prompt recruitment of immune T cells and induction of IFN-γ-mediated protective immune responses during the early stage of reactivation of chronic T. gondii infection to control tachyzoite growth

    Dense granule protein 3 of Toxoplasma gondii plays a crucial role in the capability of the tissue cysts of the parasite to persist in the presence of anti-cyst CD8+ T cells during the chronic stage of infection

    Get PDF
    Toxoplasma gondii establishes chronic infection by forming tissue cysts, and this chronic infection is one of the most common parasitic infections in humans. Our recent studies revealed that whereas CD8+ T cells of genetically resistant BALB/c mice have the capability to remove the tissue cysts of the parasite through their perforin-mediated activities, small portions of the cysts are capable of persisting in the presence of the anti-cyst CD8+ T cells. It is currently unknown how those small portions of the cysts resist or escape the T-cell immunity and persist in the hosts. In the present study, we discovered that the cysts, which persisted in the presence of the perforin-mediated CD8+ T-cell immunity, have significantly greater mRNA levels for four dense granule proteins, GRA1, GRA2, GRA3, and GRA7, and one rhoptry protein, ROP35, than the total population of the cysts present in the absence of the T cells. In addition, increased levels of mRNA for GRA1, GRA3, and ROP35 in the cysts significantly correlated with their successful persistence through the condition in which greater degrees of reduction of the cyst burden occurred through anti-cyst CD8+ T cells. In addition, GRA3-deficient T. gondii displayed significantly enhanced elimination of the cysts by anti-cyst CD8+ T cells when compared to the wild-type parasite. These results indicate that GRA3 is a key molecule that mediates in the capability of T. gondii cysts to persist by resisting or evading the anti-cyst activity of CD8+ T cells during the later stage of infection

    Adjuvanted multi-epitope vaccines protect HLA-A*11:01 transgenic mice against Toxoplasma gondii

    Get PDF
    We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion [GLA-SE]) for their ability to protect against Toxoplasma gondii in HLA transgenic mice. Our constructs each included 5 of our best down-selected CD8(+) T cell-eliciting epitopes, a universal CD4(+) helper T lymphocyte epitope (PADRE), and a secretory signal, all arranged for optimal MHC-I presentation. Their capacity to elicit immune and protective responses was studied using immunization of HLA-A*11:01 transgenic mice. These multi-epitope vaccines increased memory CD8(+) T cells that produced IFN-γ and protected mice against parasite burden when challenged with T. gondii. Endocytosis of emulsion-trapped protein and cross presentation of the antigens must account for the immunogenicity of our adjuvanted protein. Thus, our work creates an adjuvanted platform assembly of peptides resulting in cross presentation of CD8(+) T cell-eliciting epitopes in a vaccine that prevents toxoplasmosis

    EMILIN2 (Elastin microfibril interface located protein), potential modifier of thrombosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elastin microfibril interface located protein 2 (EMILIN2) is an extracellular glycoprotein associated with cardiovascular development. While other EMILIN proteins are reported to play a role in elastogenesis and coagulation, little is known about EMILIN2 function in the cardiovascular system. The objective of this study was to determine whether EMILIN2 could play a role in thrombosis.</p> <p>Results</p> <p>EMILIN2 mRNA was expressed in 8 wk old C57BL/6J mice in lung, heart, aorta and bone marrow, with the highest expression in bone marrow. In mouse cells, EMILIN2 mRNA expression in macrophages was higher than expression in endothelial cells and fibroblasts. EMILIN2 was identified with cells and extracellular matrix by immunohistochemistry in the carotid and aorta. After carotid ferric chloride injury, EMILIN2 was abundantly expressed in the thrombus and inhibition of EMILIN2 increased platelet de-aggregation after ADP-stimulated platelet aggregation.</p> <p>Conclusions</p> <p>These results suggest EMILIN2 could play a role in thrombosis as a constituent of the vessel wall and/or a component of the thrombus.</p

    Genetic Dissection of Quantitative Trait Loci for Hemostasis and Thrombosis on Mouse Chromosomes 11 and 5 Using Congenic and Subcongenic Strains

    No full text
    <div><p>Susceptibility to thrombosis varies in human populations as well as many inbred mouse strains. Only a small portion of this variation has been identified, suggesting that there are unknown modifier genes. The objective of this study was to narrow the quantitative trait locus (QTL) intervals previously identified for hemostasis and thrombosis on mouse distal chromosome 11 (<i>Hmtb6</i>) and on chromosome 5 (<i>Hmtb4</i> and <i>Hmtb5</i>). In a tail bleeding/rebleeding assay, a reporter assay for hemostasis and thrombosis, subcongenic strain (6A-2) had longer clot stability time than did C57BL/6J (B6) mice but a similar time to the B6-Chr11<sup>A/J</sup> consomic mice, confirming the <i>Hmtb</i>6 phenotype. Six congenic and subcongenic strains were constructed for chromosome 5, and the congenic strain, 2A-1, containing the shortest A/J interval (16.6 cM, 26.6 Mbp) in the <i>Hmtb4</i> region, had prolonged clot stability time compared to B6 mice. In the 3A-2 and CSS-5 mice bleeding time was shorter than for B6, mice confirming the <i>Hmtb5</i> QTL. An increase in bleeding time was identified in another congenic strain (3A-1) with A/J interval (24.8 cM, 32.9 Mbp) in the proximal region of chromosome 5, confirming a QTL for bleeding previously mapped to that region and designated as <i>Hmtb10</i>. The subcongenic strain 4A-2 with the A/J fragment in the proximal region had a long occlusion time of the carotid artery after ferric chloride injury and reduced dilation after injury to the abdominal aorta compared to B6 mice, suggesting an additional locus in the proximal region, which was designated <i>Hmtb11</i> (5 cM, 21.4 Mbp). CSS-17 mice crossed with congenic strains, 3A-1 and 3A-2, modified tail bleeding. Using congenic and subcongenic analysis, candidate genes previously identified and novel genes were identified as modifiers of hemostasis and thrombosis in each of the loci <i>Hmtb</i>6, <i>Hmtb</i>4, <i>Hmtb</i>10, and <i>Hmtb</i>11. </p> </div

    Genotype of Chromosome 11 Congenic and Subcongenic Mice.

    No full text
    <p>A. Marker positions. White bars-A/J, grey-uncertain, black-B6. B. First bleeding. C. Time between first and second bleeding. Values are the mean ± SEM, n=10-28, one-way ANOVA, * P< 0.05, **P<0.01.</p

    Genotype of Chromosome 5 Congenics and Subcongenic Mice.

    No full text
    <p>Marker positions. White bars-A/J, grey-uncertain, black-B6, hatched-heterozygous.</p

    Comparison of Consomic and Congenic crosses.

    No full text
    <p>A. First bleeding time. B. Clot Stability-time between first and second bleeding. Values are the mean ± SEM, n=9-24, one-way ANOVA, * P< 0.05.</p
    corecore