38 research outputs found

    Self-suppressed quantum diffusion and fundamental noise limit of soliton microcombs

    Full text link
    Quantum diffusion of soliton microcombs has long been recognized as their fundamental noise limit. Here we surpass such limit by utilizing dispersive wave dynamics in multimode microresonators. Through the recoil force provided by these dispersive waves, the quantum diffusion can be suppressed to a much lower level that forms the ultimate fundamental noise limit of soliton microcombs. Our findings enable coherence engineering of soliton microcombs in the quantum-limited regime, providing critical guidelines for using soliton microcombs to synthesize ultralow-noise microwave and optical signals.Comment: 8 pages, 5 figure

    Microresonator-referenced soliton microcombs with zeptosecond-level timing noise

    Full text link
    Optical frequency division relies on optical frequency combs to coherently translate ultra-stable optical frequency references to the microwave domain. This technology has enabled microwave synthesis with ultralow timing noise, but the required instruments are too bulky for real-world applications. Here, we develop a compact optical frequency division system using microresonator-based frequency references and comb generators. The soliton microcomb formed in an integrated Si3_3N4_4 microresonator is stabilized to two lasers referenced to an ultrahigh-QQ MgF2_2 microresonator. Photodetection of the soliton pulse train produces 25 GHz microwaves with absolute phase noise of -141 dBc/Hz (547 zs Hz−1/2^{-1/2}) at 10 kHz offset frequency. The synthesized microwaves are tested as local oscillators in jammed communication channels, resulting in improved fidelity compared with those derived from electronic oscillators. Our work demonstrates unprecedented coherence in miniature microwave oscillators, providing key building blocks for next-generation timekeeping, navigation, and satellite communication systems.Comment: 8 pages, 7 figures and table

    Non-orthogonal cavity modes near exceptional points in the far field

    Full text link
    Non-orthogonal eigenstates are a fundamental feature of non-Hermitian systems and are accompanied by the emergence of nontrivial features. However, the platforms to explore non-Hermitian mode couplings mainly measure near-field effects, and the far-field behaviour remain mostly unexplored. Here, we study how a microcavity with non-Hermitian mode coupling exhibits eigenstate non-orthogonality by investigating the spatial field and the far-field polarization of cavity modes. The non-Hermiticity arises from asymmetric backscattering, which is controlled by integrating two scatterers of different size and location into a microdisk. We observe that the spatial field overlaps of two modes increases abruptly to its maximum value, whilst different far-field elliptical polarizations of two modes coalesce when approaching an exceptional point. We demonstrate such features experimentally by measuring the far-field polarization from the fabricated microdisks. Our work reveals the non-orthogonality in the far-field degree of freedom, and the integrability of the microdisks paves a way to integrate more non-Hermitian optical properties into nanophotonic systems.Comment: 11pages, 4 figure

    Single charge control of localized excitons in heterostructures with ferroelectric thin films and two-dimensional transition metal dichalcogenides

    Full text link
    Single charge control of localized excitons (LXs) in two-dimensional transition metal dichalcogenides (TMDCs) is crucial for potential applications in quantum information processing and storage. However, traditional electrostatic doping method with applying metallic gates onto TMDCs may cause the inhomogeneous charge distribution, optical quench, and energy loss. Here, by locally controlling the ferroelectric polarization of the ferroelectric thin film BiFeO3 (BFO) with a scanning probe, we can deterministically manipulate the doping type of monolayer WSe2 to achieve the p-type and n-type doping. This nonvolatile approach can maintain the doping type and hold the localized excitonic charges for a long time without applied voltage. Our work demonstrated that ferroelectric polarization of BFO can control the charges of LXs effectively. Neutral and charged LXs have been observed in different ferroelectric polarization regions, confirmed by magnetic optical measurement. Highly circular polarization degree about 90 % of the photon emission from these quantum emitters have been achieved in high magnetic fields. Controlling single charge of LXs in a non-volatile way shows a great potential for deterministic photon emission with desired charge states for photonic long-term memory.Comment: 13 pages, 5 figure

    Controllable Spin-Resolved Photon Emission Enhanced by Slow-Light Mode in Photonic Crystal Waveguides on Chip

    Full text link
    We report the slow-light enhanced spin-resolved in-plane emission from a single quantum dot (QD) in a photonic crystal waveguide (PCW). The slow light dispersions in PCWs are designed to match the emission wavelengths of single QDs. The resonance between two spin states emitted from a single QD and a slow light mode of a waveguide is investigated under a magnetic field with Faraday configuration. Two spin states of a single QD experience different degrees of enhancement as their emission wavelengths are shifted by combining diamagnetic and Zeeman effects with an optical excitation power control. A circular polarization degree up to 0.81 is achieved by changing the off-resonant excitation power. Strongly polarized photon emission enhanced by a slow light mode shows great potential to attain controllable spin-resolved photon sources for integrated optical quantum networks on chip.Comment: 7 pages,5 figure

    Fourier Hull Fatigue Assessment Method’s Proposing and Software Development

    No full text
    In this paper, based on the spectral analysis and the strain energy theory, the systematic errors of Rain-flow Counting Method have been quantitatively analyzed, from which a Fourier Counting Method is put forward. And according to this new method, software has been developed combined with sampling data of the real container ship via rigorous theoretical derivation and compact modular design, which has certain theoretical innovation significance and practical value

    Knowledge Graph Augmented Network Towards Multiview Representation Learning for Aspect-based Sentiment Analysis

    Full text link
    Aspect-based sentiment analysis (ABSA) is a fine-grained task of sentiment analysis. To better comprehend long complicated sentences and obtain accurate aspect-specific information, linguistic and commonsense knowledge are generally required in this task. However, most methods employ complicated and inefficient approaches to incorporate external knowledge, e.g., directly searching the graph nodes. Additionally, the complementarity between external knowledge and linguistic information has not been thoroughly studied. To this end, we propose a knowledge graph augmented network (KGAN), which aims to effectively incorporate external knowledge with explicitly syntactic and contextual information. In particular, KGAN captures the sentiment feature representations from multiple different perspectives, i.e., context-, syntax- and knowledge-based. First, KGAN learns the contextual and syntactic representations in parallel to fully extract the semantic features. Then, KGAN integrates the knowledge graphs into the embedding space, based on which the aspect-specific knowledge representations are further obtained via an attention mechanism. Last, we propose a hierarchical fusion module to complement these multiview representations in a local-to-global manner. Extensive experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN. Notably, with the help of the pretrained model of RoBERTa, KGAN achieves a new record of state-of-the-art performance.Comment: Under revie
    corecore