109 research outputs found
An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization
We consider the problem of minimizing the sum of two convex functions: one is
smooth and given by a gradient oracle, and the other is separable over blocks
of coordinates and has a simple known structure over each block. We develop an
accelerated randomized proximal coordinate gradient (APCG) method for
minimizing such convex composite functions. For strongly convex functions, our
method achieves faster linear convergence rates than existing randomized
proximal coordinate gradient methods. Without strong convexity, our method
enjoys accelerated sublinear convergence rates. We show how to apply the APCG
method to solve the regularized empirical risk minimization (ERM) problem, and
devise efficient implementations that avoid full-dimensional vector operations.
For ill-conditioned ERM problems, our method obtains improved convergence rates
than the state-of-the-art stochastic dual coordinate ascent (SDCA) method
On Degrees of Freedom of Projection Estimators with Applications to Multivariate Nonparametric Regression
In this paper, we consider the nonparametric regression problem with
multivariate predictors. We provide a characterization of the degrees of
freedom and divergence for estimators of the unknown regression function, which
are obtained as outputs of linearly constrained quadratic optimization
procedures, namely, minimizers of the least squares criterion with linear
constraints and/or quadratic penalties. As special cases of our results, we
derive explicit expressions for the degrees of freedom in many nonparametric
regression problems, e.g., bounded isotonic regression, multivariate
(penalized) convex regression, and additive total variation regularization. Our
theory also yields, as special cases, known results on the degrees of freedom
of many well-studied estimators in the statistics literature, such as ridge
regression, Lasso and generalized Lasso. Our results can be readily used to
choose the tuning parameter(s) involved in the estimation procedure by
minimizing the Stein's unbiased risk estimate. As a by-product of our analysis
we derive an interesting connection between bounded isotonic regression and
isotonic regression on a general partially ordered set, which is of independent
interest.Comment: 72 pages, 7 figures, Journal of the American Statistical Association
(Theory and Methods), 201
- …