14 research outputs found

    Table_2_Helicobacter pylori infection altered gastric microbiota in patients with chronic gastritis.xlsx

    No full text
    ObjectiveThe present study aims to investigate the effect of Helicobacter pylori (Hp) infection on gastric mucosal microbiota in patients with chronic gastritis.MethodsHere recruited a population of 193 patients with both chronic gastritis and positive rapid urease, including 124 patients with chronic atrophic gastritis (CAG) and 69 patients with chronic non-atrophic gastritis (nCAG). Immunoblotting was used to detect four serum Hp antibodies (UreA, UreB, VacA and CagA) to determine the types of virulent Hp-I and avirulent Hp-II infections. Gastric microbiota was profiled by 16S rRNA gene V3-V4 region, and R software was used to present the relationship between the microbial characteristics and the type of Hp infection.ResultsIn the stomach of patients with Hp-positive gastritis, the dominant gastric bacterial genera included Ralstonia (23.94%), Helicobacter (20.28%), Pseudonocardia (9.99%), Mesorhizobium (9.21%), Bradyrhizobium (5.05%), and Labrys (4.75%). The proportion of Hp-I infection was significantly higher in CAG patients (91.1%) than in nCAG patients (71.0%) (P ConclusionsVirulent Hp infection alters the gastric microbiota, reduces microbial diversity, and enhances the symbiotic relationship between the Helicobacter bacteria and non-Helicobacter bacteria in patients with chronic gastritis. The data provides new evidence for treating Hp infection by improving the gastric microbiota.</p

    Image_2_Helicobacter pylori infection altered gastric microbiota in patients with chronic gastritis.tif

    No full text
    ObjectiveThe present study aims to investigate the effect of Helicobacter pylori (Hp) infection on gastric mucosal microbiota in patients with chronic gastritis.MethodsHere recruited a population of 193 patients with both chronic gastritis and positive rapid urease, including 124 patients with chronic atrophic gastritis (CAG) and 69 patients with chronic non-atrophic gastritis (nCAG). Immunoblotting was used to detect four serum Hp antibodies (UreA, UreB, VacA and CagA) to determine the types of virulent Hp-I and avirulent Hp-II infections. Gastric microbiota was profiled by 16S rRNA gene V3-V4 region, and R software was used to present the relationship between the microbial characteristics and the type of Hp infection.ResultsIn the stomach of patients with Hp-positive gastritis, the dominant gastric bacterial genera included Ralstonia (23.94%), Helicobacter (20.28%), Pseudonocardia (9.99%), Mesorhizobium (9.21%), Bradyrhizobium (5.05%), and Labrys (4.75%). The proportion of Hp-I infection was significantly higher in CAG patients (91.1%) than in nCAG patients (71.0%) (P ConclusionsVirulent Hp infection alters the gastric microbiota, reduces microbial diversity, and enhances the symbiotic relationship between the Helicobacter bacteria and non-Helicobacter bacteria in patients with chronic gastritis. The data provides new evidence for treating Hp infection by improving the gastric microbiota.</p

    Image_3_Helicobacter pylori infection altered gastric microbiota in patients with chronic gastritis.tif

    No full text
    ObjectiveThe present study aims to investigate the effect of Helicobacter pylori (Hp) infection on gastric mucosal microbiota in patients with chronic gastritis.MethodsHere recruited a population of 193 patients with both chronic gastritis and positive rapid urease, including 124 patients with chronic atrophic gastritis (CAG) and 69 patients with chronic non-atrophic gastritis (nCAG). Immunoblotting was used to detect four serum Hp antibodies (UreA, UreB, VacA and CagA) to determine the types of virulent Hp-I and avirulent Hp-II infections. Gastric microbiota was profiled by 16S rRNA gene V3-V4 region, and R software was used to present the relationship between the microbial characteristics and the type of Hp infection.ResultsIn the stomach of patients with Hp-positive gastritis, the dominant gastric bacterial genera included Ralstonia (23.94%), Helicobacter (20.28%), Pseudonocardia (9.99%), Mesorhizobium (9.21%), Bradyrhizobium (5.05%), and Labrys (4.75%). The proportion of Hp-I infection was significantly higher in CAG patients (91.1%) than in nCAG patients (71.0%) (P ConclusionsVirulent Hp infection alters the gastric microbiota, reduces microbial diversity, and enhances the symbiotic relationship between the Helicobacter bacteria and non-Helicobacter bacteria in patients with chronic gastritis. The data provides new evidence for treating Hp infection by improving the gastric microbiota.</p

    Image_1_Helicobacter pylori infection altered gastric microbiota in patients with chronic gastritis.tif

    No full text
    ObjectiveThe present study aims to investigate the effect of Helicobacter pylori (Hp) infection on gastric mucosal microbiota in patients with chronic gastritis.MethodsHere recruited a population of 193 patients with both chronic gastritis and positive rapid urease, including 124 patients with chronic atrophic gastritis (CAG) and 69 patients with chronic non-atrophic gastritis (nCAG). Immunoblotting was used to detect four serum Hp antibodies (UreA, UreB, VacA and CagA) to determine the types of virulent Hp-I and avirulent Hp-II infections. Gastric microbiota was profiled by 16S rRNA gene V3-V4 region, and R software was used to present the relationship between the microbial characteristics and the type of Hp infection.ResultsIn the stomach of patients with Hp-positive gastritis, the dominant gastric bacterial genera included Ralstonia (23.94%), Helicobacter (20.28%), Pseudonocardia (9.99%), Mesorhizobium (9.21%), Bradyrhizobium (5.05%), and Labrys (4.75%). The proportion of Hp-I infection was significantly higher in CAG patients (91.1%) than in nCAG patients (71.0%) (P ConclusionsVirulent Hp infection alters the gastric microbiota, reduces microbial diversity, and enhances the symbiotic relationship between the Helicobacter bacteria and non-Helicobacter bacteria in patients with chronic gastritis. The data provides new evidence for treating Hp infection by improving the gastric microbiota.</p

    Table_1_Helicobacter pylori infection altered gastric microbiota in patients with chronic gastritis.docx

    No full text
    ObjectiveThe present study aims to investigate the effect of Helicobacter pylori (Hp) infection on gastric mucosal microbiota in patients with chronic gastritis.MethodsHere recruited a population of 193 patients with both chronic gastritis and positive rapid urease, including 124 patients with chronic atrophic gastritis (CAG) and 69 patients with chronic non-atrophic gastritis (nCAG). Immunoblotting was used to detect four serum Hp antibodies (UreA, UreB, VacA and CagA) to determine the types of virulent Hp-I and avirulent Hp-II infections. Gastric microbiota was profiled by 16S rRNA gene V3-V4 region, and R software was used to present the relationship between the microbial characteristics and the type of Hp infection.ResultsIn the stomach of patients with Hp-positive gastritis, the dominant gastric bacterial genera included Ralstonia (23.94%), Helicobacter (20.28%), Pseudonocardia (9.99%), Mesorhizobium (9.21%), Bradyrhizobium (5.05%), and Labrys (4.75%). The proportion of Hp-I infection was significantly higher in CAG patients (91.1%) than in nCAG patients (71.0%) (P ConclusionsVirulent Hp infection alters the gastric microbiota, reduces microbial diversity, and enhances the symbiotic relationship between the Helicobacter bacteria and non-Helicobacter bacteria in patients with chronic gastritis. The data provides new evidence for treating Hp infection by improving the gastric microbiota.</p

    Image_4_Helicobacter pylori infection altered gastric microbiota in patients with chronic gastritis.tif

    No full text
    ObjectiveThe present study aims to investigate the effect of Helicobacter pylori (Hp) infection on gastric mucosal microbiota in patients with chronic gastritis.MethodsHere recruited a population of 193 patients with both chronic gastritis and positive rapid urease, including 124 patients with chronic atrophic gastritis (CAG) and 69 patients with chronic non-atrophic gastritis (nCAG). Immunoblotting was used to detect four serum Hp antibodies (UreA, UreB, VacA and CagA) to determine the types of virulent Hp-I and avirulent Hp-II infections. Gastric microbiota was profiled by 16S rRNA gene V3-V4 region, and R software was used to present the relationship between the microbial characteristics and the type of Hp infection.ResultsIn the stomach of patients with Hp-positive gastritis, the dominant gastric bacterial genera included Ralstonia (23.94%), Helicobacter (20.28%), Pseudonocardia (9.99%), Mesorhizobium (9.21%), Bradyrhizobium (5.05%), and Labrys (4.75%). The proportion of Hp-I infection was significantly higher in CAG patients (91.1%) than in nCAG patients (71.0%) (P ConclusionsVirulent Hp infection alters the gastric microbiota, reduces microbial diversity, and enhances the symbiotic relationship between the Helicobacter bacteria and non-Helicobacter bacteria in patients with chronic gastritis. The data provides new evidence for treating Hp infection by improving the gastric microbiota.</p

    Image_5_Helicobacter pylori infection altered gastric microbiota in patients with chronic gastritis.tif

    No full text
    ObjectiveThe present study aims to investigate the effect of Helicobacter pylori (Hp) infection on gastric mucosal microbiota in patients with chronic gastritis.MethodsHere recruited a population of 193 patients with both chronic gastritis and positive rapid urease, including 124 patients with chronic atrophic gastritis (CAG) and 69 patients with chronic non-atrophic gastritis (nCAG). Immunoblotting was used to detect four serum Hp antibodies (UreA, UreB, VacA and CagA) to determine the types of virulent Hp-I and avirulent Hp-II infections. Gastric microbiota was profiled by 16S rRNA gene V3-V4 region, and R software was used to present the relationship between the microbial characteristics and the type of Hp infection.ResultsIn the stomach of patients with Hp-positive gastritis, the dominant gastric bacterial genera included Ralstonia (23.94%), Helicobacter (20.28%), Pseudonocardia (9.99%), Mesorhizobium (9.21%), Bradyrhizobium (5.05%), and Labrys (4.75%). The proportion of Hp-I infection was significantly higher in CAG patients (91.1%) than in nCAG patients (71.0%) (P ConclusionsVirulent Hp infection alters the gastric microbiota, reduces microbial diversity, and enhances the symbiotic relationship between the Helicobacter bacteria and non-Helicobacter bacteria in patients with chronic gastritis. The data provides new evidence for treating Hp infection by improving the gastric microbiota.</p

    Relatively Recent Evolution of Pelage Coloration in Colobinae: Phylogeny and Phylogeography of Three Closely Related Langur Species

    Get PDF
    <div><p>To understand the evolutionary processes leading to the diversity of Asian colobines, we report here on a phylogenetic, phylogeographical and population genetic analysis of three closely related langurs, <i>Trachypithecus francoisi</i>, <i>T. poliocephalus</i> and <i>T. leucocephalus</i>, which are all characterized by different pelage coloration predominantly on the head and shoulders. Therefore, we sequenced a 395 bp long fragment of the mitochondrial control region from 178 <i>T. francoisi</i>, 54 <i>T. leucocephalus</i> and 19 <i>T. poliocephalus</i> individuals, representing all extant populations of these three species. We found 29 haplotypes in <i>T. francoisi,</i> 12 haplotypes in <i>T. leucocephalus</i> and three haplotypes in <i>T. poliocephalus</i>. <i>T. leucocephalus</i> and <i>T. poliocephalus</i> form monophyletic clades, which are both nested within <i>T. francoisi</i>, and diverged from <i>T. francoisi</i> recently, 0.46-0.27 (<i>T. leucocephalus</i>) and 0.50-0.25 million years ago (<i>T. poliocephalus</i>). Thus, <i>T. francoisi</i> appears as a polyphyletic group, while <i>T. leucocephalus</i> and <i>T. poliocephalus</i> are most likely independent descendents of <i>T. francoisi</i> that are both physically separated from <i>T. francoisi</i> populations by rivers, open sea or larger habitat gaps. Since <i>T. francoisi</i> populations show no variability in pelage coloration, pelage coloration in <i>T. leucocephalus</i> and <i>T. poliocephalus</i> is most likely the result of new genetic mutations after the split from <i>T. francoisi</i> and not of the fixation of different characters derived from an ancestral polymorphism. This case study highlights that morphological changes for example in pelage coloration can occur in isolated populations in relatively short time periods and it provides a solid basis for studies in related species. Nevertheless, to fully understand the evolutionary history of these three langur species, nuclear loci should be investigated as well.</p></div

    Phylogenetic relationships among <i>T. francoisi, T. leucocephalus</i> and <i>T. poliocephalus</i> haplotypes.

    No full text
    <p>Labels refer to haplotype identification numbers (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0061659#pone.0061659.s001" target="_blank">Table S1</a>). Values above branches indicate support for each node based on ML/MP/Bayesian algorithms, respectively. Bootstrap values <50% are not shown. Divergence age estimates for major nodes are depicted in circles along with their 95% credibility intervals (grey bars). Sampling lots are presented as colored rectangles.</p
    corecore