74 research outputs found

    Ada3Diff: Defending against 3D Adversarial Point Clouds via Adaptive Diffusion

    Full text link
    Deep 3D point cloud models are sensitive to adversarial attacks, which poses threats to safety-critical applications such as autonomous driving. Robust training and defend-by-denoising are typical strategies for defending adversarial perturbations. However, they either induce massive computational overhead or rely heavily upon specified priors, limiting generalized robustness against attacks of all kinds. To remedy it, this paper introduces a novel distortion-aware defense framework that can rebuild the pristine data distribution with a tailored intensity estimator and a diffusion model. To perform distortion-aware forward diffusion, we design a distortion estimation algorithm that is obtained by summing the distance of each point to the best-fitting plane of its local neighboring points, which is based on the observation of the local spatial properties of the adversarial point cloud. By iterative diffusion and reverse denoising, the perturbed point cloud under various distortions can be restored back to a clean distribution. This approach enables effective defense against adaptive attacks with varying noise budgets, enhancing the robustness of existing 3D deep recognition models.Comment: Accepted by ACM MM 202

    Diversity-Aware Meta Visual Prompting

    Full text link
    We present Diversity-Aware Meta Visual Prompting~(DAM-VP), an efficient and effective prompting method for transferring pre-trained models to downstream tasks with frozen backbone. A challenging issue in visual prompting is that image datasets sometimes have a large data diversity whereas a per-dataset generic prompt can hardly handle the complex distribution shift toward the original pretraining data distribution properly. To address this issue, we propose a dataset Diversity-Aware prompting strategy whose initialization is realized by a Meta-prompt. Specifically, we cluster the downstream dataset into small homogeneity subsets in a diversity-adaptive way, with each subset has its own prompt optimized separately. Such a divide-and-conquer design reduces the optimization difficulty greatly and significantly boosts the prompting performance. Furthermore, all the prompts are initialized with a meta-prompt, which is learned across several datasets. It is a bootstrapped paradigm, with the key observation that the prompting knowledge learned from previous datasets could help the prompt to converge faster and perform better on a new dataset. During inference, we dynamically select a proper prompt for each input, based on the feature distance between the input and each subset. Through extensive experiments, our DAM-VP demonstrates superior efficiency and effectiveness, clearly surpassing previous prompting methods in a series of downstream datasets for different pretraining models. Our code is available at: \url{https://github.com/shikiw/DAM-VP}.Comment: CVPR2023, code is available at https://github.com/shikiw/DAM-V

    PointCAT: Contrastive Adversarial Training for Robust Point Cloud Recognition

    Full text link
    Notwithstanding the prominent performance achieved in various applications, point cloud recognition models have often suffered from natural corruptions and adversarial perturbations. In this paper, we delve into boosting the general robustness of point cloud recognition models and propose Point-Cloud Contrastive Adversarial Training (PointCAT). The main intuition of PointCAT is encouraging the target recognition model to narrow the decision gap between clean point clouds and corrupted point clouds. Specifically, we leverage a supervised contrastive loss to facilitate the alignment and uniformity of the hypersphere features extracted by the recognition model, and design a pair of centralizing losses with the dynamic prototype guidance to avoid these features deviating from their belonging category clusters. To provide the more challenging corrupted point clouds, we adversarially train a noise generator along with the recognition model from the scratch, instead of using gradient-based attack as the inner loop like previous adversarial training methods. Comprehensive experiments show that the proposed PointCAT outperforms the baseline methods and dramatically boosts the robustness of different point cloud recognition models, under a variety of corruptions including isotropic point noises, the LiDAR simulated noises, random point dropping and adversarial perturbations

    Improving Adversarial Robustness of Masked Autoencoders via Test-time Frequency-domain Prompting

    Full text link
    In this paper, we investigate the adversarial robustness of vision transformers that are equipped with BERT pretraining (e.g., BEiT, MAE). A surprising observation is that MAE has significantly worse adversarial robustness than other BERT pretraining methods. This observation drives us to rethink the basic differences between these BERT pretraining methods and how these differences affect the robustness against adversarial perturbations. Our empirical analysis reveals that the adversarial robustness of BERT pretraining is highly related to the reconstruction target, i.e., predicting the raw pixels of masked image patches will degrade more adversarial robustness of the model than predicting the semantic context, since it guides the model to concentrate more on medium-/high-frequency components of images. Based on our analysis, we provide a simple yet effective way to boost the adversarial robustness of MAE. The basic idea is using the dataset-extracted domain knowledge to occupy the medium-/high-frequency of images, thus narrowing the optimization space of adversarial perturbations. Specifically, we group the distribution of pretraining data and optimize a set of cluster-specific visual prompts on frequency domain. These prompts are incorporated with input images through prototype-based prompt selection during test period. Extensive evaluation shows that our method clearly boost MAE's adversarial robustness while maintaining its clean performance on ImageNet-1k classification. Our code is available at: https://github.com/shikiw/RobustMAE.Comment: Accepted at ICCV 202

    Wogonin induces cell cycle arrest and erythroid differentiation in imatinib-resistant K562 cells and primary CML cells

    Get PDF
    Wogonin, a flavonoid derived from Scutellaria baicalensis Georgi, has been demonstrated to be highly effective in treating hematologic malignancies. In this study, we investigated the anticancer effects of wogonin on K562 cells, K562 imatinib-resistant cells, and primary patient-derived CML cells. Wogonin up-regulated transcription factor GATA-1 and enhanced binding between GATA-1 and FOG-1, thereby increasing expression of erythroid-differentiation genes. Wogonin also up-regulated the expression of p21 and induced cell cycle arrest. Studies employing benzidine staining and analyses of cell surface markers glycophorin A (GPA) and CD71 indicated that wogonin promoted differentiation of K562, imatinib-resistant K562, and primary patient-derived CML cells. Wogonin also enhanced binding between GATA-1 and MEK, resulting in inhibition of the growth of CML cells. Additionally, in vivo studies showed that wogonin decreased the number of CML cells and prolonged survival of NOD/SCID mice injected with K562 and imatinib-resistant K562 cells. These data suggested that wogonin induces cycle arrest and erythroid differentiation in vitro and inhibits proliferation in vivo

    The water lily genome and the early evolution of flowering plants

    Get PDF
    Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1–3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.Supplementary Tables: This file contains Supplementary Tables 1-21.National Natural Science Foundation of China, the open funds of the State Key Laboratory of Crop Genetics and Germplasm Enhancement (ZW201909) and State Key Laboratory of Tree Genetics and Breeding, the Fujian provincial government in China, the European Union Seventh Framework Programme (FP7/2007-2013) under European Research Council Advanced Grant Agreement and the Special Research Fund of Ghent University.http://www.nature.com/naturecommunicationsam2021BiochemistryGeneticsMicrobiology and Plant Patholog

    Experimental and Numerical Resistance Analysis for a Cruise Ship W/O Fin Stabilizers

    No full text
    Applying fin stabilizers is an effective solution for ship rolls on waves in a seaway. They generally consist of one or two pairs of retractable fins that are symmetrically mounted to both sides of the ship, effectively reducing the roll motion at low or moderate speeds. Fin stabilizers are commonly used by cruise ships for the comfort and safety of passengers. However, there is still little experimental and numerical analysis of the fins’ effect on hydrodynamic performance. In this study, the resistance performance of a cruise ship was investigated with/without fin stabilizers at different fin angles and ship velocities by model tests and numerical analysis. The CFD analysis provides a flow-detailed interpretation of the physical phenomenon, especially at an asymmetric maximum fin angle. The significant fin-induced resistance is newly discovered and averages up to 19% in calm water conditions, while the added resistance in waves is evaluated with a smaller increment up to 1.31%. By comparing the numerical and experimental results, this study provides insight into the resistance induced by overhanging fins, which provides an accurate prediction reference for cruise ship performance and benefits the fin stabilizers’ design and selection

    Numerical and Testing Analysis of Fin Stabilizers of A Medium Sized Cruise Ship with Overset Grids

    No full text
    Fin stabilizers represent an effective solution to address the roll motion of ships and improve the comfort of passengers on cruise ships. These devices typically comprise of one or two pairs of retractable fins, symmetrically mounted on either side of the ship, which utilize hydrodynamic lift to dampen motion through a control algorithm. However, coupling analysis of fin stabilizers and ships at various speeds and angles of attack remains limited, particularly with regard to the impact of the hull flow field on fin resistance. This paper investigates the drag performance and towing motion of a cruise ship using model tests and numerical analysis methods, and compares the results of the numerical and model tests. It also examines the drag resulting from fin stabilizers and the coupling motion of the ship, offering insight for the design and selection of fin stabilizers, cruise ship design, and performance prediction

    Predictor-Based Neural Dynamic Surface Control for Strict-Feedback Nonlinear Systems With Unknown Control Gains

    No full text
    Neural dynamic surface control (NDSC) is an effective technique for the tracking control of nonlinear systems. The objective of this article is to improve closed-loop transient performance and reduce the number of learning parameters for a strict-feedback nonlinear system with unknown control gains. For this purpose, a predictor-based NDSC (PNDSC) approach is presented. It introduces Nussbaum functions and predictors into the traditional NDSC for nonlinear systems with unknown control gains. Unlike NDSC that uses surface errors to update the learning parameters of neural networks (NNs), the PNDSC employs prediction errors for the same purpose, leading to improved transient performance of closed-loop control systems. To reduce the number of learning parameters, the PNDSC is further embedded with the technique of the minimal number of learning parameters (MNLPs). This avoids the problem of the ``explosion of learning parameters'' as the order of the system increases. A Lyapunov-based stability analysis shows that all signals are bounded in the closed-loop systems under PNDSC embedded with MNLPs. Simulations are conducted to demonstrate the effectiveness of the PNDSC approach presented in this article
    • …
    corecore