7 research outputs found

    Simultaneous Measurement Method and Error Analysis of the Six Degrees-of-Freedom Motion Errors of a Rotary Axis

    No full text
    Error measurement of a rotary axis is the key to error compensation and to improving motion accuracy. However, only a few instruments can measure all the motion errors of a rotary axis. In this paper, a device based on laser collimation and laser interferometry was introduced for simultaneous measurement of all six degrees-of-freedom motion errors of a rotary axis. Synchronous rotation of the target and reference rotary axes was achieved by developing a proportional⁻integral⁻derivative algorithm. An error model for the measuring device was established using a homogeneous transformation matrix. The influences of installation errors, manufacturing errors, and error crosstalk were studied in detail, and compensation methods for them were proposed. After compensation, the repeatability of axial and radial motion errors was significantly improved. The repeatability values of angular positioning error and of tilt motion error around the y axis and x axis were 28.0″, 2.8″, and 3.9″. The repeatability values of translational motion errors were less than 2.8 μm. The comparison experiments show that the comparison errors of angular positioning error and tilt motion error around the y axis were 2.3″ and 2.9″, respectively. These results demonstrate the effectiveness of our method and the error compensation model

    A Novel PZT Pump with Built-in Compliant Structures

    No full text
    Different to the traditionally defined valved piezoelectric (PZT) pump and valveless PZT pump, two groups of PZT pumps with built-in compliant structures—with distances between the free ends of 0.2 mm (Group A) and 0 mm (Group B)—were designed, fabricated, and experimentally tested. This type of pump mainly contains a chamber 12 mm in diameter and 1.1 mm in height, a PZT vibrator, and two pairs of compliant structures arranged on the flowing channel. The flow-resistance differences between these two groups of PZT pumps were theoretically and experimentally verified. The relationships between the amplitude, applied voltage and frequency of the PZT vibrators were obtained experimentally, with results illustrating that the amplitude linearly and positively correlates with the voltage, while nonlinearly and negatively correlating to the frequency. The flow rate performance of these two groups was experimentally tested from 110–160 Vpp and 10–130 Hz. Results showed that the flow rate positively correlates to the voltage, and the optimum flow rate frequency centers around 90 Hz for Group A and 80 Hz for Group B, respectively. The flow rate performances of Group B were further measured from 60–100 Hz and 170–210 Vpp, and obtained optimal flow rates of 3.6 mL/min at 210 Vpp and 80 Hz when ignoring the siphon-caused backward flow rate. As the compliant structures are not prominently limited by the channel’s size, and the pump can be minimized by Micro-electromechanical Systems (MEMS) processing methods, it is a suitable candidate for microfluidic applications like closed-loop cooling systems and drug delivery systems

    Cu(I)-Photosensitizer-Catalyzed Olefin-α-Amino Radical Metathesis/Demethylenative Cyclization of 1,7-Enynes

    No full text
    A demethylenative En-Yne radical cyclization of 1,7-enynes has been successfully developed to chemoselectively afford 3,4-dihyroquinolin-2-ones or quinolin-2-ones under the catalysis of Cu(I) photosensitizers PS3 and PS6 with different redox potentials. The preliminary mechanistic experiments revealed that the reaction underwent an unprecedented olefin-α-amino radical metathesis-type process. A reasonable mechanism was proposed to illustrate the catalyst-controlled chemoselectivity of the reaction based on preliminary mechanistic experiments and DFT calculations
    corecore