42 research outputs found

    Functional Characterization of BoaMYB51s as Central Regulators of Indole Glucosinolate Biosynthesis in Brassica oleracea var. alboglabra Bailey

    Get PDF
    R2R3-MYB transcription factor MYB51 is known to control indole glucosinolate (indole GSL) biosynthesis in Arabidopsis. Here, two copies of BoaMYB51 have been isolated in Chinese kale (Brassica oleracea var. alboglabra Bailey), designated BoaMYB51.1 and BoaMYB51.2, which exhibit overlapping but distinct expression levels among different organs and respond to signaling molecules in a similar pattern. It has been demonstrated a structural and functional conservation between BoaMYB51s and AtMYB51 by phylogenetic analysis, complementation studies and transient expression assay. To further investigate the transcriptional mechanism, we identified the transcriptional activation domain (TAD) and putative interacting proteins of BoaMYB51s by means of yeast (Saccharomyces cerevisiae) two hybrid. Using tobacco (Nicotiana benthamiana) transient expression assay, we confirmed that the carboxy-end is required for transcriptional activation activity of BoaMYB51s. In addition, several BoaMYB51-interacting proteins have been identified by yeast two-hybrid screening. These results provide important insights into the molecular mechanisms by which MYB51 transcriptionally regulates indole GSL biosynthesis

    Characteristics of spontaneous nystagmus and its correlation to video head impulse test findings in vestibular neuritis

    Get PDF
    ObjectiveTo explore the direction and SPV (slow phase velocity) of the components of spontaneous nystagmus (SN) in patients with vestibular neuritis (VN) and the correlation between SN components and affected semicircular canals (SCCs). Additionally, we aimed to elucidate the role of directional features of peripheral SN in diagnosing acute vestibular syndrome.Materials and methodsA retrospective analysis was conducted on 38 patients diagnosed with VN in our hospital between 2022 and 2023. The direction and SPV of SN components recorded with three-dimensional videonystagmography (3D-VNG) and the video head impulse test (vHIT) gain of each SCC were analyzed as observational indicators. We examined the correlation between superior and inferior vestibular nerve damage and the direction and SPV of SN components, and vHIT gain values in VN patients.ResultsThe median illness duration of between symptom onset and moment of testing was 6 days among the 38 VN patients (17 right VN and 21 left VN). In total, 31 patients had superior vestibular neuritis (SVN), and 7 had total vestibular neuritis (TVN). Among the 38 VN patients, all had horizontal component with an SPV of (7.66 ± 5.37) Β°/s, 25 (65.8%) had vertical upward component with a SPV of (2.64 ± 1.63) Β°/s, and 26 (68.4%) had torsional component with a SPV of (4.40 ± 3.12) Β°/s. The vHIT results in the 38 VN patients showed that the angular vestibulo-ocular reflex (aVOR) gain of the anterior (A), lateral (L), and posterior (P) SCCs on the ipsilesional side were 0.60 ± 0.23, 0.44 ± 0.15 and 0.89 ± 0.19, respectively, while the gains on the opposite side were 0.95 ± 0.14, 0.91 ± 0.08, and 0.96 ± 0.11, respectively. There was a statistically significant difference in the aVOR gain between the A-, L-SCC on the ipsilesional side and the other SCCs (p < 0.001). The aVOR gains of A-, L-, and P-SCC on the ipsilesional sides in 31 SVN patients were 0.62 ± 0.24, 0.45 ± 0.16, and 0.96 ± 0.10, while the aVOR gains on the opposite side were 0.96 ± 0.13, 0.91 ± 0.06, and 0.98 ± 0.11, respectively. There was a statistically significant difference in the aVOR gain between the A-, L-SCC on the ipsilesional side and the other SCCs (p < 0.001). In 7 TVN patients, the aVOR gains of A-, L-, and P-SCC on the ipsilesional side were 0.50 ± 0.14, 0.38 ± 0.06, and 0.53 ± 0.07, while the aVOR gains on the opposite side were 0.93 ± 0.17, 0.90 ± 0.16, and 0.89 ± 0.09, respectively. There was a statistically significant difference in the aVOR gain between the A-, L-, and P-SCC on the ipsilesional side and the other SCCs (p < 0.001). The aVOR gain asymmetry of L-SCCs in 38 VN was 36.3%. The aVOR gain asymmetry between bilateral A-SCCs and bilateral P-SCCs for VN patients with and without a vertical upward component was 12.8% and 8.3%, which was statistically significant (p < 0.05). For VN patients with and without a torsional component, the aVOR gain asymmetry of bilateral vertical SCCs was 17.0% and 6.6%, which was statistically significant (p < 0.01). Further analysis revealed a significant positive correlation between the aVOR gain asymmetry of L-SCCs and the SPV of the horizontal component of SN in all VN patients (r = 0.484, p < 0.01), as well as between the asymmetry of bilateral vertical SCCs and the SPV of torsional component in 26 VN patients (r = 0.445, p < 0.05). However, there was no significant correlation between the aVOR gains asymmetry of bilateral A-SCCs and P-SCCs and the SPV of the vertical component in 25 VN patients.ConclusionThere is a correlation between the three-dimensional direction and SPV characteristics of SN and the aVOR gain of vHIT in VN patients. These direction characteristics can help assess different SCCs impairments in patients with unilateral vestibular diseases

    Regulation of Asymmetrical Cytokinesis by cAMP during Meiosis I in Mouse Oocytes

    Get PDF
    Mammalian oocytes undergo an asymmetrical first meiotic division, extruding half of their chromosomes in a small polar body to preserve maternal resources for embryonic development. To divide asymmetrically, mammalian oocytes relocate chromosomes from the center of the cell to the cortex, but little is known about the underlying mechanisms. Here, we show that upon the elevation of intracellular cAMP level, mouse oocytes produced two daughter cells with similar sizes. This symmetrical cell division could be rescued by the inhibition of PKA, a cAMP-dependent protein kinase. Live cell imaging revealed that a symmetrically localized cleavage furrow resulted in symmetrical cell division. Detailed analyses demonstrated that symmetrically localized cleavage furrows were caused by the inappropriate central positioning of chromosome clusters at anaphase onset, indicating that chromosome cluster migration was impaired. Notably, high intracellular cAMP reduced myosin II activity, and the microinjection of phospho-myosin II antibody into the oocytes impeded chromosome migration and promoted symmetrical cell division. Our results support the hypothesis that cAMP plays a role in regulating asymmetrical cell division by modulating myosin II activity during mouse oocyte meiosis I, providing a novel insight into the regulation of female gamete formation in mammals

    A Conflict Duration Graph-Based Coordination Method for Connected and Automated Vehicles at Signal-Free Intersections

    No full text
    Previous studies on Connected and Automated Vehicles (CAVs) demonstrated the potential to coordinate the behaviors of multiple connected vehicles for traffic improvements. In this paper, we first propose a Conflict Duration Graph-based (CDG-based) coordination framework to resolve collisions and improve the traffic capacity of signal-free intersections. Secondly, a Speed Control-based Intersection Coordination Model (SICM) is developed to identify complex constraints in multi-vehicle collision scenarios. Thirdly, a geometric Translation-based Intersection Coordination Algorithm (TICA) is proposed to calculate the ideal location of time blocks in CDGs and then obtain the near-optimal design speed in the form of combinatorial optimization. Twelve groups of test scenarios with different traffic volumes were designed and tested on a MATLAB-based simulation platform. Simulation results showed that the proposed method can resolve all the collisions and instruct the vehicles to pass signal-free intersections collaboratively without stopping in low to medium level of congestion

    D-dimer-albumin ratio (DAR) asΒ a new biomarker for predicting preoperative deep vein thrombosis after geriatric hip fracture patients

    No full text
    Abstract Purpose Hip fractures in the elderly are complicated by preoperative deep vein thrombosis (DVT). The objective of this study is to determine the usefulness of blood-based biomarkers, particularly the D-dimer-albumin ratio (DAR), in predicting preoperative DVT. Methods A retrospective observational study was carried out on 1149 patients from a single hospital, and subsequently validated on an additional 626 patients from a separate hospital. The aim was to evaluate the prognostic and predictive value of 10 biomarkers, with a specific emphasis on DAR, in both cohorts. The primary measure of interest was the occurrence of preoperative DVT. Results The ratio of D-dimer to albumin demonstrated superior predictive capability for preoperative DVT in older patients with hip fractures compared to other biomarkers (AUC = 0.677). Using the optimal cutoff point of 0.24, high DAR was significantly associated with preoperative DVT (OR 3.45, 95% CI 2.00–5.95). Notably, all the DAR definitions detailed above were successfully validated in an external, independent cohort. Conclusions DAR may be a valuable biomarker for predicting preoperative DVT in elderly patients with hip fractures

    Different network algorithm fault diagnosis experiment results.

    No full text
    Different network algorithm fault diagnosis experiment results.</p

    Model recognition accuracy comparison.

    No full text
    Model recognition accuracy comparison.</p

    Comparison chart of classification results.

    No full text
    Comparison chart of classification results.</p

    Convolution module added to the BN layer.

    No full text
    Convolution module added to the BN layer.</p

    Comparison chart of classification results.

    No full text
    Comparison chart of classification results.</p
    corecore