33 research outputs found

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) in Chinese patients with congenital bilateral absence of vas deferens

    Get PDF
    AbstractBackgroundGenetic testing of the cystic fibrosis transmembrane conductance (CFTR) gene is currently performed in patients with congenital bilateral absence of vas deferens (CBAVD). This study was conducted to investigate the role of mutations in the CFTR gene in CBAVD-dependent male infertility.Methods73 Chinese patients diagnosed with CBAVD were studied. The entire coding regions and splice sites of 27 exons of the CFTR gene were sequenced in 146 chromosomes from the 73 CBAVD patients. Screening was carried out using PCR, gel electrophoresis and DNA sequencing to identify novel variants of the entire coding regions and boundaries of the 27 exons.ResultsFive novel nonsynonymous mutations, three novel splice site mutations and one deletion were identified by sequencing. Apart from the novel variants, we also found 19 previously reported mutations and polymorphism sites. Thirty-four patients (46.57%) had the 5T variant (6 homozygous and 28 heterozygous) and in two of them it was not associated with any detectable mutation of the CFTR gene. All potential pathogenic mutations are not contained in the 1000 Genome Project database. In total, the present study identified 30 potential pathogenic variations in the CFTR gene, 9 of which had not previously been described.ConclusionsMost patients with CBAVD have mutations in the CFTR gene. A mild genotype with one or two mild or variable mutations was observed in all the patients. These findings improve our understanding of the distribution of CFTR alleles in CBAVD patients and will facilitate the development of more sensitive CFTR mutation screening

    Fine mapping and identification of the fuzzless gene GaFzl in DPL972 (Gossypium arboreum).

    Full text link
    peer reviewedKEY MESSAGE: The fuzzless gene GaFzl was fine mapped to a 70-kb region containing a GIR1 gene, Cotton_A_11941, responsible for the fuzzless trait in Gossypium arboreum DPL972. Cotton fiber is the most important natural textile resource. The fuzzless mutant DPL972 (Gossypium arboreum) provides a useful germplasm resource to explore the molecular mechanism underlying fiber and fuzz initiation and development. In our previous research, the fuzzless gene in DPL972 was identified as a single dominant gene and named GaFzl. In the present study, we fine mapped this gene using F2 and BC1 populations. By combining traditional map-based cloning and next-generation sequencing, we mapped GaFzl to a 70-kb region containing seven annotated genes. RNA-Sequencing and re-sequencing analysis narrowed these candidates to two differentially expressed genes, Cotton_A_11941 and Cotton_A_11942. Sequence alignment uncovered no variation in coding or promoter regions of Cotton_A_11942 between DPL971 and DPL972, whereas two single-base mutations in the promoter region and a TTG insertion in the coding region were detected in Cotton_A_11941 in DPL972. Cotton_A_11941 encoding a homologous gene of GIR1 (GLABRA2-interacting repressor) in Arabidopsis thaliana is thus the candidate gene most likely responsible for the fuzzless trait in DPL972. Our findings should lead to a better understanding of cotton fuzz formation, thereby accelerating marker-assisted selection during cotton breeding

    High Density Culture Process and Growth Kinetics of Flavor Yeast A10-2

    No full text
    In order to realize the high-density culture and establish the predictive growth kinetics model of a self-isolated flavor yeast, the high-density culture process was studied of 4-ethyl-2-methoxyphenol producing yeast A10-2, which screened from soy sauce fermentation mash. The type of culture medium (nitrogen and carbon source) and concentration were studied and optimized. The growth kinetics and the substrate (total sugar) consumption models were established and verified. The results showed that (NH4) H2PO4 fed to make the concentration of culture medium 0.2 g/100 mL was the best inorganic source of nitrogen. To obtain the best cell growth rate, molasses as the only source of carbon, should be fed which controlled the concentration of total sugar in the culture medium to 0.4~0.6 g/100 mL. The growth of A10-2 yeast followed the S-shaped curve of a Logistic model, and the substrate (total sugar) consumption followed the Leudeking-Priet equation. The maximum obtained biomass specific growth rate μm was 0.4764 h−1, while the maximum biomass growth yield coefficient YG was 0.5879 g/g. The maintenance coefficient was 0.0127 g·L−1·h−1. The established models could better describe the growth and sugar consumption of yeast in the process of high-density culture, and have predictive significance

    Advantages of Animal Husbandry Industry in China's Fight against Poverty

    No full text
    Poverty alleviation needs developing the industries related to the economic income. Only when the industry develops, can the income of the poverty-stricken people be increased fundamentally, accordingly help eradicate the poverty from the root cause. Compared with other industries, the animal husbandry industry has unique advantages for poverty alleviation and assistance in poverty alleviation. The animal husbandry breeding industry is characterized by short breeding time, relatively high economic income, and farmers do not need a high educational level, so the breeding threshold is low. For poverty-stricken farmers, this is a feasible way to help them get rid of poverty. Combined with the experience of poverty alleviation through developing the animal husbandry industry, this paper discussed the development advantages of the animal husbandry industry in poverty alleviation, analyzed the main ways of exerting and applying the advantages. It is intended to provide a certain reference for the targeted poverty alleviation through developing the animal husbandry industry

    Lianhua-Qingwen Displays Antiviral and Anti-Inflammatory Activity and Synergistic Effects with Oseltamivir against Influenza B Virus Infection in the Mouse Model

    No full text
    Influenza B virus (IBV) is one of the main pathogens of the annual influenza epidemic, and the disease burden is significant, especially among children and young teenagers. In this study, the antiviral and anti-inflammatory effects of a traditional Chinese medicine prescription, the Lianhua-Qingwen capsule, were evaluated. Our results showed that Lianhua-Qingwen capsule can inhibit both Victoria and Yamagata lineages, and the 50% inhibitive concentrations ranged from 0.228 ± 0.150 to 0.754 ± 0.161 mg/mL. The time course results demonstrated that IBV yields were reduced with treatment at 0–4 h after infection, and the mechanistic research verified that Lianhua-Qingwen capsule has hemagglutination inhibition activity against B/Guangzhou/0215/2012 but not A/California/04/2009. In addition to antiviral activity, Lianhua-Qingwen capsule can also inhibit excessive expression of RANTES, IL-6, IL-8, IP-10, TNF-α, MCP-1, MIP-1β, and IFN-λ at the mRNA level and prevent a severe inflammatory response. The in vivo results confirmed that orally administered Lianhua-Qingwen capsule (100–400 mg/kg/day) does not reduce IBV-induced lung viral load and mortality in mice. However, the pathological change in lungs was alleviated, and there were fewer inflammatory cells in the lungs of Lianhua-Qingwen capsule treated mice than those in controls. Further research confirmed that the combination treatment of 200 mg/kg/day of Lianhua-Qingwen capsule with 2 mg/kg/day of oseltamivir significantly reduced IBV infection over the individual administration of either alone in vivo. Our findings prove that Lianhua-Qingwen capsule could be used as an assistant medicine to enhance the effect of oseltamivir against influenza B virus infection

    Pterodontic Acid Isolated from Laggera pterodonta Inhibits Viral Replication and Inflammation Induced by Influenza A Virus

    No full text
    Laggera pterodonta (DC.) Benth. is a traditional Chinese medicine. The previous study revealed that the crude extracts of this herb could inhibit influenza virus infection, but its anti-influenza components and underlying mechanism of action remain unknown. Column chromatography was performed to isolate components from the plant. Activity against influenza virus of the compound was determined by CPE inhibition assay. Neuraminidase (NA) inhibition was measured by chemiluminescence assay. The anti-virus and anti-inflammation effects were determined using dual-luciferase reporter assay, immunofluorescence, quantitative real-time PCR and luminex assay. Pterodontic acid was isolated from L. pterodonta, which showed selective anti-viral activities to H1 subtype of human influenza A virus. Meanwhile, the NA activity was not obviously inhibited by the compound. Further experiments exhibited that the compound can suppress the activation of NF-κB signal pathway and export of viral RNP complexes from the nucleus. In addition, it can significantly attenuate expression of the pro-inflammatory molecules IL-6, MIP-1β, MCP-1, and IP-10 induced by human influenza A virus (H1N1) and similarly downregulate expression of cytokines and chemokines induced by avian influenza A virus (H9N2). This study showed that in vitro antiviral activity of pterodontic acid is most probably associated with inhibiting the replication of influenza A virus by blocking nuclear export of viral RNP complexes, and attenuating the inflammatory response by inhibiting activation of the NF-κB pathway. Pterodontic acid might be a potential antiviral agent against influenza A virus

    Radix isatidis Polysaccharides Inhibit Influenza a Virus and Influenza A Virus-Induced Inflammation via Suppression of Host TLR3 Signaling In Vitro

    No full text
    Influenza remains one of the major epidemic diseases worldwide, and rapid virus replication and collateral lung tissue damage caused by excessive pro-inflammatory host immune cell responses lead to high mortality rates. Thus, novel therapeutic agents that control influenza A virus (IAV) propagation and attenuate excessive pro-inflammatory responses are needed. Polysaccharide extract from Radix isatidis, a traditional Chinese herbal medicine, exerted potent anti-IAV activity against human seasonal influenza viruses (H1N1 and H3N2) and avian influenza viruses (H6N2 and H9N2) in vitro. The polysaccharides also significantly reduced the expression of pro-inflammatory cytokines (IL-6) and chemokines (IP-10, MIG, and CCL-5) stimulated by A/PR/8/34 (H1N1) at a range of doses (7.5 mg/mL, 15 mg/mL, and 30 mg/mL); however, they were only effective against progeny virus at a high dose. Similar activity was detected against inflammation induced by avian influenza virus H9N2. The polysaccharides strongly inhibited the protein expression of TLR-3 induced by PR8, suggesting that they impair the upregulation of pro-inflammatory factors induced by IAV by inhibiting activation of the TLR-3 signaling pathway. The polysaccharide extract from Radix isatidis root therefore has the potential to be used as an adjunct to antiviral therapy for the treatment of IAV infection
    corecore