76 research outputs found

    Implications of depressive mood in OSAHS patients: insights from event-related potential

    Get PDF
    Background: Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a chronic breathing disorder characterized by recurrent upper airway obstruction during sleep. Although previous studies have shown a link between OSAHS and depressive mood, the neurobiological mechanisms underlying mood disorders in OSAHS patients remain poorly understood. This study aims to investigate the emotion processing mechanism in OSAHS patients with depressive mood using event-related potentials (ERPs). Methods: Seventy-four OSAHS patients were divided into the depressive mood and non-depressive mood groups according to their Self-rating Depression Scale (SDS) scores. Patients underwent overnight polysomnography and completed various cognitive and emotional questionnaires. The patients were shown facial images displaying positive, neutral, and negative emotions and tasked to identify the emotion category, while their visual evoked potential was simultaneously recorded. Results: The two groups did not differ significantly in age, BMI, and years of education, but showed significant differences in their slow wave sleep ratio (P = 0.039), ESS (P = 0.006), MMSE (P < 0.001), and MOCA scores (P = 0.043). No significant difference was found in accuracy and response time on emotional face recognition between the two groups. N170 latency in the depressive group was significantly longer than the non-depressive group (P = 0.014 and 0.007) at the bilateral parieto-occipital lobe, while no significant difference in N170 amplitude was found. No significant difference in P300 amplitude or latency between the two groups. Furthermore, N170 amplitude at PO7 was positively correlated with the arousal index and negatively with MOCA scores (both P < 0.01). Conclusion: OSAHS patients with depressive mood exhibit increased N170 latency and impaired facial emotion recognition ability. Special attention towards the depressive mood among OSAHS patients is warranted for its implications for patient care

    Understanding the compound marine heatwave and low-chlorophyll extremes in the western Pacific Ocean

    Get PDF
    The western Pacific Ocean is the global center for marine biodiversity, with high vulnerability to climate change. A better understanding of the spatiotemporal characteristics and potential drivers of compound marine heatwaves (MHWs) and low-chlorophyll (LChl) extreme events is essential for the conservation and management of local marine organisms and ecosystems. Here, using daily satellite sea surface temperature and model-based chlorophyll concentration, we find that the climatological spatial distribution of MHW-LChl events in total days, duration, and intensity exhibits heterogeneous distributions. The southwest sections of the South China Sea (WSCS) and Indonesian Seas are the hotspots for compound events, with total MHW-LChl days that are more than 2.5 times higher than in the other sub-regions. Notably, there is a trend toward more frequent (&gt; 4.2 d/decade), stronger (&gt; 0.5), and longer-lasting (&gt; 1.4 d/decade) MHW-LChl occurrences in the WSCS. The occurrence of compound MHW-LChl extremes exhibits remarkable seasonal differences, with the majority of these events transpiring during winter. Moreover, there are generally statistically significant increasing trends in MHW-LChl events for all properties on both seasonal and inter-annual timescales. Furthermore, we reveal that the total days of compound MHW-LChl extremes are strongly modulated by large-scale climate modes such as the El Niño-Southern Oscillation and Dipole Mode Index. Overall, pinpointing MHW-LChl hotspots and understanding their changes and drivers help vulnerable communities in better preparing for heightened and compounded risks to marine organism and ecosystems under climate change

    Fingolimod exerts in vitro anticancer activity against hepatocellular carcinoma cell lines via YAP/TAZ suppression

    Get PDF
    Hepatocellular carcinoma (HCC) remains a notably global health challenge with high mortality rates and poor prognosis. The deregulation of the Hippo signalling pathway, especially the overexpression and activation of downstream effector Yes-associated protein (YAP), has been demonstrated to result in the rapid malignant evolution of HCC. In this context, multiple efforts have been dedicated to targeting YAP for HCC therapy, but effective YAP inhibitors are still lacking. In this study, through a YAP-TEAD (8×GTIIC) luciferase reporter assay, we identified fingolimod, an immunomodulatory drug approved for the treatment of multiple sclerosis, as a novel YAP inhibitor. Fingolimod suppressed the proliferation of HCC cell lines by downregulating the protein levels as well as the transactivating function of YAP. Overall, our current study not only identifies fingolimod as a novel YAP-targeting inhibitor, but also indicates that this clinically-approved drug could be utilized as a potential and feasible therapeutic drug for HCC

    On-surface crystallization behaviors of H-bond donor–acceptor complexes at liquid/solid interfaces

    Get PDF
    Two-dimensional (2D) crystallization behaviors of A-TPCn (n = 4, 6, 10), T3C4, and hydrogen-bonded complexes T3C4@TPCn (n = 4, 6, 10) are investigated by means of scanning tunneling microscope (STM) observations and density functional theory (DFT) calculations. The STM observations reveal that A-TPC4, A-TPC10, and T3C4 self-organize into dumbbell-shaped structures, well-ordered bright arrays, and zigzag structures, respectively. Interestingly, T3C4@TPC10 fails to form the cage-ball structure, whereas T3C4@TPC4 and T3C4@TPC6 co-assemble into cage-ball structures with the same lattice parameters. The filling rates of the balls of these two kinds of cage-ball structures depend heavily on the deposition sequence. As a result, the filling rates of the cages in T3C4/A-TPCn (n = 4, 6) with deposition of T3C4 anterior to A-TPCn are higher than those in A-TPCn/T3C4 (n = 4, 6) with the opposite deposition sequence. Furthermore, lattice defects formed by T3C4 coexist with the cage-ball structures. Moreover, the similar energy per unit area of lattice defects (−0.101 kcal mol–1 Å–2) and the two cage-ball networks (−0.194 and −0.208 kcal mol–1 Å–2, respectively), illustrating the similar stabilities of lattice defects and cage-ball networks, demonstrates the rationality of lattice defects. Combining STM investigations and DFT calculations, this work could provide a useful approach to investigate the 2D crystallization mechanisms of supramolecular liquid crystals on surfaces.This work was supported by the National Basic Research Program of China (No. 2016YFA0200700), the National Natural Science Foundation of China (Nos. 21472029, 11001257, and 21773041), the MINECO-FEDER funds (project MAT2015-66208-C3-1-P), and the Gobierno de Aragon-FSE (E47_17R and B.F grant).Peer reviewe

    Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System

    Get PDF
    SummaryMyelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor-activated Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP- and β-catenin-negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair

    Finite Element Analysis and Experiment of the Bruise Behavior of Carrot under Impact Loading

    No full text
    Root–stem separating is one of the most important processes in carrot harvesting, but it is easy to cause damage due to the impact. In order to reduce the damage of carrot harvesting and provide the basis for the design of the separation mechanism, the damage mechanism of carrot was studied by the finite element method (FEM) and pendulum experiment in this study. Through the simulation analysis and the pendulum experiment, it was found that the critical damage impact force was 45.2 N and 43.1 N, respectively. Comparing the two results, the critical impact force of the carrot was basically the same, with an error of 4.87%. In conclusion, the FEM was reliable for the carrot damage prediction, and the critical impact force could be used for the design of a carrot harvesting mechanism

    Design and Experiment of the Automatic Laying System for Rice Seedling Tray

    No full text
    In the process of raising rice seedlings, it is necessary to manually place the seedling trays one by one in the seedling field, which is labor intensive and low in efficiency. In order to solve this problem, according to the actual conditions of the rice seedling field, this paper designs and develops an automatic rice tray laying system, which consists of a gantry truss moving unit, a tray laying trolley unit, a tray laying mechanism unit and a sensor control unit. Through the movement and timing coordination of the cams in the laying mechanism unit, four actions of holding, clamping, laying and restoring are designed to realize the orderly and automatic laying of the stacked seedling trays one by one. In order to meet the agronomic requirements of the horizontal and vertical spacing of seeding trays, especially the efficiency of rice tray laying, the control strategies of the key parts of the system were simulated, selected and optimized. For the longitudinal movement of the gantry truss, the cross-coupling control strategy is adopted to realize the detection and compensation correction of the synchronous position error of the two driving motors. As for the drive motor of the laying trolley and the laying mechanism, the optimized master-slave follow-up control method is adopted to improve the efficiency and accuracy. The results of simulation and field experiment show that when the tray trolley moves on the gantry truss at the speed of 7.5 cm/s, the gantry truss moves at the speed of 35 cm/s in the longitudinal direction, and when the height of the tray laying mechanism is 100 mm from the ground and the motor speed is 375 rpm, the horizontal spacing of the tray can be maintained at 25 ± 5 mm and the vertical spacing at 15 ± 5 mm. The efficiency of tray laying can be increased by 35.7%, up to 380 trays/h, meeting the technical requirements of mechanized field tray laying
    corecore