1,422 research outputs found

    The Hidden Nematic Fluctuations in the Triclinic (Ca0.85La0.15)10(Pt3As8)(Fe2As2)5 Superconductor Revealed by Ultrafast Optical Spectroscopy

    Full text link
    We reported the quasiparticle relaxation dynamics of an optimally doped triclinic iron-based superconductor (Ca0.85_{0.85}La0.15_{0.15})10_{10}(Pt3_3As8_8)(Fe2_2As2_2)5_5 with bulk TcT_c = 30 K using polarized ultrafast optical pump-probe spectroscopy. Our results reveal anisotropic transient reflectivity induced by nematic fluctuations develops below TnemT_{nem} ≈\approx 120 K and persists in the superconducting states. Measurements under high pump fluence reveal three distinct, coherent phonon modes at frequencies of 1.6, 3.5, and 4.7 THz, corresponding to A1g(1)A_{1g}(1), EgE_g, and A1g(2)A_{1g}(2) modes, respectively. The high-frequency A1g(2)A_{1g}(2) mode corresponds to the cc-axis polarized vibrations of FeAs planes with a nominal electron-phonon coupling constant λA1g(2)\lambda _{A_{1g}(2)} ≈\approx 0.139 ±\pm 0.02. Our findings suggest that the superconductivity and nematic state are compatible but competitive at low temperatures, and the A1gA_{1g} phonons play an important role in the formation of Cooper pairs in (Ca0.85_{0.85}La0.15_{0.15})10_{10}(Pt3_3As8_8)(Fe2_2As2_2)5_5.Comment: 6 pages, 3 figures and Supplemental Material

    Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells

    Get PDF
    Objectives. Preliminary researches showed that luteolin was used to treat hypertension. However, it is still unclear whether luteolin has effect on the hypertensive complication such as vascular remodeling. The present study was designed to investigate the effect of luteolin on the hypertensive vascular remodeling and its molecular mechanism. Method and Results. We evaluated the effect of luteolin on aorta thickening of hypertension in spontaneous hypertensive rats (SHRs) and found that luteolin could significantly decrease the blood pressure and media thickness of aorta in vivo. Luteolin could inhibit angiotensin II- (Ang II-) induced proliferation and migration of vascular smooth muscle cells (VSMCs). Dichlorofluorescein diacetate (DCFH-DA) staining result showed that luteolin reduced Ang II-stimulated ROS production in VSMCs. Furthermore, western blot and gelatin zymography results showed that luteolin treatment leaded to a decrease in ERK1/2, p-ERK1/2, p-p38, MMP2, and proliferating cell nuclear antigen (PCNA) protein level. Conclusion. These data support that luteolin can ameliorate hypertensive vascular remodeling by inhibiting the proliferation and migration of Ang II-induced VSMCs. Its mechanism is mediated by the regulation of MAPK signaling pathway and the production of ROS

    Functional Connectivity Changes Across the Spectrum of Subjective Cognitive Decline, Amnestic Mild Cognitive Impairment and Alzheimer’s Disease

    Get PDF
    The abnormality occurs at molecular, cellular as well as network levels in patients with Alzheimer’s disease (AD) prior to diagnosis. Most previous connectivity studies were conducted at 1 out of 3 (local, meso and global) scales in subjects covering only part of the entire AD spectrum (subjective cognitive decline, SCD; amnestic mild cognitive impairment, aMCI; and then fully manifest AD). Data interpretation within the framework of disease progression is therefore difficult. The current study included 3 age- and sex-matched cohorts: SCD (n = 32), aMCI (n = 37) and fully-established AD (n = 30). A group of healthy elderly subjects (n = 40) were included as a normal control (NC). Network connectivity was examined at the local (degree centrality), meso [subgraph centrality (SC)], and global (eigenvector and page-rank centralities) levels. As compared to NC, SCD subjects had isolated decrease of SC in primary (somatomotor and visual) networks. aMCI subjects had decreased centralities at all three scales in associative (frontoparietal control, dorsal attention, limbic and default) networks. AD subjects had increased centrality at the global scale in all seven networks. There was a positive association between Montreal Cognitive Assessment (MoCA) scores and DC in the frontoparietal control network in SCD, a negative relationship between Mini-Mental State Examination (MMSE) scores and EC in the somatomotor network in AD. These findings suggest that the primary network is impaired as early as in SCD. Impairment in the associative network also starts at the local level at this stage and may contribute to the cognitive decline. As associative network impairment extends from local to meso and global scales in aMCI, compensatory mechanisms in the primary network are activated

    Search for the decay J/ψ→γ+invisibleJ/\psi\to\gamma + \rm {invisible}

    Full text link
    We search for J/ψJ/\psi radiative decays into a weakly interacting neutral particle, namely an invisible particle, using the J/ψJ/\psi produced through the process ψ(3686)→π+π−J/ψ\psi(3686)\to\pi^+\pi^-J/\psi in a data sample of (448.1±2.9)×106(448.1\pm2.9)\times 10^6 ψ(3686)\psi(3686) decays collected by the BESIII detector at BEPCII. No significant signal is observed. Using a modified frequentist method, upper limits on the branching fractions are set under different assumptions of invisible particle masses up to 1.2  GeV/c2\mathrm{\ Ge\kern -0.1em V}/c^2. The upper limit corresponding to an invisible particle with zero mass is 7.0×10−7\times 10^{-7} at the 90\% confidence level

    Observation of ηc→ωω\eta_c\to\omega\omega in J/ψ→γωωJ/\psi\to\gamma\omega\omega

    Get PDF
    Using a sample of (1310.6±7.0)×106(1310.6\pm7.0)\times10^6 J/ψJ/\psi events recorded with the BESIII detector at the symmetric electron positron collider BEPCII, we report the observation of the decay of the (11S0)(1^1 S_0) charmonium state ηc\eta_c into a pair of ω\omega mesons in the process J/ψ→γωωJ/\psi\to\gamma\omega\omega. The branching fraction is measured for the first time to be B(ηc→ωω)=(2.88±0.10±0.46±0.68)×10−3\mathcal{B}(\eta_c\to\omega\omega)= (2.88\pm0.10\pm0.46\pm0.68)\times10^{-3}, where the first uncertainty is statistical, the second systematic and the third is from the uncertainty of B(J/ψ→γηc)\mathcal{B}(J/\psi\to\gamma\eta_c). The mass and width of the ηc\eta_c are determined as M=(2985.9±0.7±2.1) M=(2985.9\pm0.7\pm2.1)\,MeV/c2c^2 and Γ=(33.8±1.6±4.1) \Gamma=(33.8\pm1.6\pm4.1)\,MeV.Comment: 13 pages, 6 figure

    Observation and study of the decay J/ψ→ϕηη′J/\psi\rightarrow\phi\eta\eta'

    Get PDF
    We report the observation and study of the decay J/ψ→ϕηη′J/\psi\rightarrow\phi\eta\eta' using 1.3×1091.3\times{10^9} J/ψJ/\psi events collected with the BESIII detector. Its branching fraction, including all possible intermediate states, is measured to be (2.32±0.06±0.16)×10−4(2.32\pm0.06\pm0.16)\times{10^{-4}}. We also report evidence for a structure, denoted as XX, in the ϕη′\phi\eta' mass spectrum in the 2.0−2.12.0-2.1 GeV/c2c^2 region. Using two decay modes of the η′\eta' meson (γπ+π−\gamma\pi^+\pi^- and ηπ+π−\eta\pi^+\pi^-), a simultaneous fit to the ϕη′\phi\eta' mass spectra is performed. Assuming the quantum numbers of the XX to be JP=1−J^P = 1^-, its significance is found to be 4.4σ\sigma, with a mass and width of (2002.1±27.5±21.4)(2002.1 \pm 27.5 \pm 21.4) MeV/c2c^2 and (129±17±9)(129 \pm 17 \pm 9) MeV, respectively, and a product branching fraction B(J/ψ→ηX)×B(X→ϕη′)=(9.8±1.2±1.7)×10−5\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.8 \pm 1.2 \pm 1.7)\times10^{-5}. Alternatively, assuming JP=1+J^P = 1^+, the significance is 3.8σ\sigma, with a mass and width of (2062.8±13.1±7.2)(2062.8 \pm 13.1 \pm 7.2) MeV/c2c^2 and (177±36±35)(177 \pm 36 \pm 35) MeV, respectively, and a product branching fraction B(J/ψ→ηX)×B(X→ϕη′)=(9.6±1.4±2.0)×10−5\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.6 \pm 1.4 \pm 2.0)\times10^{-5}. The angular distribution of J/ψ→ηXJ/\psi\rightarrow\eta{}X is studied and the two JPJ^P assumptions of the XX cannot be clearly distinguished due to the limited statistics. In all measurements the first uncertainties are statistical and the second systematic.Comment: 10 pages, 6 figures and 4 table

    Precise Measurements of Branching Fractions for Ds+D_s^+ Meson Decays to Two Pseudoscalar Mesons

    Get PDF
    We measure the branching fractions for seven Ds+D_{s}^{+} two-body decays to pseudo-scalar mesons, by analyzing data collected at s=4.178∼4.226\sqrt{s}=4.178\sim4.226 GeV with the BESIII detector at the BEPCII collider. The branching fractions are determined to be B(Ds+→K+η′)=(2.68±0.17±0.17±0.08)×10−3\mathcal{B}(D_s^+\to K^+\eta^{\prime})=(2.68\pm0.17\pm0.17\pm0.08)\times10^{-3}, B(Ds+→η′π+)=(37.8±0.4±2.1±1.2)×10−3\mathcal{B}(D_s^+\to\eta^{\prime}\pi^+)=(37.8\pm0.4\pm2.1\pm1.2)\times10^{-3}, B(Ds+→K+η)=(1.62±0.10±0.03±0.05)×10−3\mathcal{B}(D_s^+\to K^+\eta)=(1.62\pm0.10\pm0.03\pm0.05)\times10^{-3}, B(Ds+→ηπ+)=(17.41±0.18±0.27±0.54)×10−3\mathcal{B}(D_s^+\to\eta\pi^+)=(17.41\pm0.18\pm0.27\pm0.54)\times10^{-3}, B(Ds+→K+KS0)=(15.02±0.10±0.27±0.47)×10−3\mathcal{B}(D_s^+\to K^+K_S^0)=(15.02\pm0.10\pm0.27\pm0.47)\times10^{-3}, B(Ds+→KS0π+)=(1.109±0.034±0.023±0.035)×10−3\mathcal{B}(D_s^+\to K_S^0\pi^+)=(1.109\pm0.034\pm0.023\pm0.035)\times10^{-3}, B(Ds+→K+π0)=(0.748±0.049±0.018±0.023)×10−3\mathcal{B}(D_s^+\to K^+\pi^0)=(0.748\pm0.049\pm0.018\pm0.023)\times10^{-3}, where the first uncertainties are statistical, the second are systematic, and the third are from external input branching fraction of the normalization mode Ds+→K+K−π+D_s^+\to K^+K^-\pi^+. Precision of our measurements is significantly improved compared with that of the current world average values

    Observation of Ds+→pnˉD^+_s\rightarrow p\bar{n} and confirmation of its large branching fraction

    Full text link
    The baryonic decay Ds+→pnˉD^+_s\rightarrow p\bar{n} is observed, and the corresponding branching fraction is measured to be (1.21±0.10±0.05)×10−3(1.21\pm0.10\pm0.05)\times10^{-3}, where the first uncertainty is statistical and second systematic. The data sample used in this analysis was collected with the BESIII detector operating at the BEPCII e+e−e^+e^- double-ring collider with a center-of-mass energy of 4.178~GeV and an integrated luminosity of 3.19~fb−1^{-1}. The result confirms the previous measurement by the CLEO Collaboration and is of greatly improved precision, which may deepen our understanding of the dynamical enhancement of the W-annihilation topology in the charmed meson decays

    Measurement of azimuthal asymmetries in inclusive charged dipion production in e+e−e^+e^- annihilations at s\sqrt{s} = 3.65 GeV

    Get PDF
    We present a measurement of the azimuthal asymmetries of two charged pions in the inclusive process e+e−→ππXe^+e^-\rightarrow \pi\pi X based on a data set of 62 pb−1\rm{pb}^{-1} at the center-of-mass energy s=3.65\sqrt{s}=3.65 GeV collected with the BESIII detector. These asymmetries can be attributed to the Collins fragmentation function. We observe a nonzero asymmetry, which increases with increasing pion momentum. As our energy scale is close to that of the existing semi-inclusive deep inelastic scattering experimental data, the measured asymmetries are important inputs for the global analysis of extracting the quark transversity distribution inside the nucleon and are valuable to explore the energy evolution of the spin-dependent fragmentation function.Comment: 7 pages, 5 figure

    Observation of the WW-Annihilation Decay Ds+→ωπ+D^{+}_{s} \rightarrow \omega \pi^{+} and Evidence for Ds+→ωK+D^{+}_{s} \rightarrow \omega K^{+}

    Get PDF
    We report on the observation of the WW-annihilation decay Ds+→ωπ+D^{+}_{s} \rightarrow \omega \pi^{+} and the evidence for Ds+→ωK+D_{s}^{+} \rightarrow \omega K^{+} with a data sample corresponding to an integrated luminosity of 3.19 fb−1^{-1} collected with the BESIII detector at the center-of-mass energy s=4.178\sqrt{s} = 4.178 GeV. We obtain the branching fractions B(Ds+→ωπ+)=(1.77±0.32stat.±0.11sys.)×10−3\mathcal{B}(D^{+}_{s} \rightarrow \omega \pi^{+}) = (1.77\pm0.32_{{\rm stat.}}\pm0.11_{{\rm sys.}}) \times 10^{-3} and B(Ds+→ωK+)=(0.87±0.24stat.±0.07sys.)×10−3\mathcal{B}(D^{+}_{s} \rightarrow \omega K^{+}) = (0.87\pm0.24_{{\rm stat.}}\pm0.07_{{\rm sys.}}) \times 10^{-3}, respectively
    • …
    corecore