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The abnormality occurs at molecular, cellular as well as network levels in patients with
Alzheimer’s disease (AD) prior to diagnosis. Most previous connectivity studies were
conducted at 1 out of 3 (local, meso and global) scales in subjects covering only part
of the entire AD spectrum (subjective cognitive decline, SCD; amnestic mild cognitive
impairment, aMCI; and then fully manifest AD). Data interpretation within the framework
of disease progression is therefore difficult. The current study included 3 age- and
sex-matched cohorts: SCD (n = 32), aMCI (n = 37) and fully-established AD (n = 30).
A group of healthy elderly subjects (n = 40) were included as a normal control (NC).
Network connectivity was examined at the local (degree centrality), meso [subgraph
centrality (SC)], and global (eigenvector and page-rank centralities) levels. As compared
to NC, SCD subjects had isolated decrease of SC in primary (somatomotor and visual)
networks. aMCI subjects had decreased centralities at all three scales in associative
(frontoparietal control, dorsal attention, limbic and default) networks. AD subjects had
increased centrality at the global scale in all seven networks. There was a positive
association between Montreal Cognitive Assessment (MoCA) scores and DC in the
frontoparietal control network in SCD, a negative relationship between Mini-Mental State
Examination (MMSE) scores and EC in the somatomotor network in AD. These findings
suggest that the primary network is impaired as early as in SCD. Impairment in the
associative network also starts at the local level at this stage and may contribute
to the cognitive decline. As associative network impairment extends from local to
meso and global scales in aMCI, compensatory mechanisms in the primary network
are activated.

Keywords: network neuroscience, brain connectivity, centrality, Alzheimer’s disease, subjective cognitive decline,
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INTRODUCTION

Brain pathology of Alzheimer’s disease (AD) occurs decades
before the manifestations of clinical AD (Dubois et al., 2016).
With the pathological cascade, three different stages show the
progression of AD: preclinical AD, mild cognitive impairment
(MCI) and late stage of AD (Sperling et al., 2011). Subjective
cognitive decline (SCD) in the setting of preclinical AD is
defined by self-perception of worsening cognitive capacity but
no impairment in cognition on standard neuropsychological
assessments and no evidence for MCI or prodromal AD or
dementia (Jessen et al., 2014). SCD can significantly predict
MCI or dementia (Rabin et al., 2017). MCI, especially amnestic
mild cognitive impairment (aMCI), progresses to AD or other
forms of dementia more than people without MCI (Kantarci
et al., 2009). Such a three-stage continuum of AD progression
(SCD, aMCI, and AD) offers us a systematic perspective to
study AD.

Resting-state functional magnetic resonance imaging (rfMRI)
has been increasingly used as a reliable method (Zuo and
Xing, 2014) to detect brain network abnormalities in aMCI
(Agosta et al., 2012; Bharath et al., 2017; Wang et al., 2018b)
or AD (Binnewijzend et al., 2014; Wang et al., 2018b). The
rfMRI findings in AD and MCI are rather consistent across
different studies in different networks, such as default mode
network (Agosta et al., 2012), somatomotor network (Albers
et al., 2015), dorsal attention network (Qian et al., 2015), limbic
network (Nestor et al., 2003), and frontoparietal control network
(Agosta et al., 2012; Brier et al., 2012; Munro et al., 2015).
Nevertheless, relatively few studies have been systematically
examined across the entire three-stage continuum of AD
progression. Furthermore, rare quantitative conclusions of brain
network changes have been drawn on the dynamical mechanism
of the disease deterioration. Meanwhile, from a methodological
view, most previous studies focused on a single scale of functional
brain organization in AD, e.g., only at the global scale (Supekar
et al., 2008; Binnewijzend et al., 2014) or only at the local scale
(Grady et al., 2003; Klaassens et al., 2017). Thus, an examination
of multi-scale network topology across SCD, aMCI, and AD
would enhance the current understanding of neuroimaging
pathology of AD progression.

Network analyses of human brain functional connectomes,
based on graph theory, can advance our understanding of the
multi-scale intrinsic architecture of the human brain connectome
using different centralities (Zuo et al., 2012). Degree centrality
(DC) is the number of direct connections to a brain network
node and reflects local-scale connectivity. Subgraph centrality
(SC) characterizes the odd-cyclic subgraph or closed walk of
the network node, and represents a connectivity measure at
meso-scale (Zuo et al., 2012). Both eigenvector centrality (EC)
and page-rank centrality (PC) determine the nodal connectivity
with their adjacency connectivity at global-scale (Zuo et al.,
2012). More information about DC, SC, EC, and PC can also
be seen in Supplementary Materials 1. Recently, a few studies
have applied network centrality at a single scale, such as EC
(Binnewijzend et al., 2014; Adriaanse et al., 2016; Lou et al., 2016;
Qiu et al., 2016) or DC (Guo et al., 2016) in MCI or AD.

In this study, we aimed to draw a full picture of functional
changes by using network centrality at multi-scale (DC, SC, EC,
PC) in AD continuum (SCD, aMCI, and AD) and age- and
sex-matched healthy elderly subjects as normal control (NC).
Additionally, we evaluated the relationship between network
centrality at multi-scale and cognitive performances. Given
the three stages of AD continuum, we hypothesized that a
progression-dependent pattern of network centrality changes
was detectable at multiple scales.

MATERIALS AND METHODS

Participants
All our subjects are from the database (NCT 02353884, 02353845,
02225964). A total of 188 patients, including 47 SCD, 93 aMCI
and 48 AD, were recruited from the memory clinic of neurology
department of Xuanwu Hospital, Capital Medical University.
While 92 NC were recruited by advertisement from the local
community. All the subjects had no history of stroke, head injury,
or other major neuropsychiatric illness, such as Parkinson’s
disease, encephalitis, epilepsy, psychosis or congenital mental
growth retardation, alcohol or drug abuse, and other diseases
or treatments that can affect cognitive functions (Morris, 1993).
After being age- and sex-matched for each group, 139 subjects
(40 NC, 32 SCD, 37 aMCI, 30 AD) were included for
final analysis.

Demographic, Clinical, and Cognitive
Variables
The diagnoses for SCD, aMCI, and AD were made in consensus
by two consultant psychiatrists. The criteria for AD has
been reported in detail in the previous study (Wang et al.,
2014). Briefly, we diagnosed AD using the revised version
of Diagnostic and Statistical Manual of Mental Disorders 4th
Edition (DSM-IV) Criteria (American Psychiatric Association,
1994) for Dementia and the National Institute of Neurologic
and Communicative Disorders and Stroke-Alzheimer’s Disease
and Related Disorders Association (NINCDS-ADRDA) Criteria
(McKhann et al., 1984) for possible or probable AD. In
addition, patients with AD had the Clinical Dementia Rating
scale (CDRs) score of 1 and were older than 50 years
old (Morris, 1993). The criteria of aMCI was as follows:
(1) memory complaint (if possible) confirmed by an informant;
(2) preserved activities of daily living; (3) the scores for
the Chinese version of the Mini-Mental State Examination
(MMSE) ≥ 24; (4) CDRs score = 0.5 (Portet et al., 2006);
(5) not demented according to the DSM-IV (Petersen et al.,
1999, 2001; Petersen, 2003); and (6) age older than 50 years
old. More information about the criteria of aMCI has been
described in detail in a previous study (Zhang et al., 2017). The
criteria of SCD (Shu et al., 2018) included: (1) self-reported
persistent memory decline, which was confirmed by informants;
(2) performing normally on the MMSE or the Beijing version
of the Montreal Cognitive Assessment (MoCA; adjusted
for age, sex, and education); (3) CDRs score = 0; and
(4) age older than 50 years old. The criteria of NC were:
(1) no self-reported persistent memory decline; (2) performing
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normally on the MMSE or MoCA (adjusted for age, sex,
and education); (3) CDRs score = 0; and (4) age older than
50 years old.

We obtained information on age, sex and years of education
via interview, and developed a standard clinical evaluation
protocol as described above to collect scores forMMSE, Auditory
Verbal Learning Test (AVLT), MoCA, and CDRs from all
the participants.

MRI Acquisition and Processing
Magnetic resonance imaging (MRI) scans were acquired at
a 3.0 T Siemens scanner (Erlangen, Germany) at Beijing
Xuanwu Hospital, Capital Medical University. Participants were
all instructed to lie quietly and close their eyes, and received
a T1-weighted structural MRI scan (MP-RAGE sequence:
TR = 1,900 ms, TE = 2.2 ms, TI = 900 ms, FA = 9◦,
matrix = 256 × 256, slice thickness = 1.0 mm; 176 sagittal
slices, no gap) and a rfMRI scan (EPI sequence: TR = 2,000 ms,
TE = 40 ms, FA = 90◦, 28 axial slices, 4 mm isotropic voxel,
matrix = 64 × 64) of 8 min.

Both structural and functional image preprocessing were
completed in the Connectome Computation System (CCS1),
which has been described previously (Xu et al., 2015). Briefly,
CCS extended the network centrality analyses (Zuo et al., 2012)
from 3D volumetric element (voxel) to 2D surface element
(vertex) by projecting the 3D rfMRI images onto 2D cortical
surfaces (Chen et al., 2014). Such an analytic strategy has been
demonstrated to be more effective to mitigate partial volume
effects and increase test-retest reliability of rfMRI analyses
(Zuo et al., 2013; Zuo and Xing, 2014). First, T1 images were
employed to reconstruct individual cortical surfaces (Ségonne
et al., 2004, 2007). Second, rfMRI images were preprocessed in
individual native spaces to equilibrate, de-spike, correct slice
time and motion, normalize global mean intensity, regress out
the white matter, cerebrospinal fluid and Friston-24 motion
parameters, band-pass (0.01–0.1 Hz) filter and remove linear
and quadratic trends of the timeseries signals. Finally, the rfMRI
images werematched to their individual structural images using a
boundary-based registration (BBR) algorithm (Greve and Fischl,
2009). They were then further projected onto the fsaverage5
cortical surfaces in the standard MNI space (10,242 vertices
per hemisphere and 4 mm inter-vertex gap on average;
Thomas Yeo et al., 2011).

Quality control procedure was carried out with CCS to
high-quality preprocessed brain images for network centrality
analysis. Specifically, screenshots were obtained for skull
stripping, tissue segmentation, surface reconstruction, BBR
image registration, and the head motion correction during
rfMRI (Jiang et al., 2015). For those individuals with any
of the first three showing bad quality, the brain extraction
will be invented by manually editing. Meanwhile, head
motion of each participant met following criterion: the
mean frame-wise displacement (meanFD) < 0.2 mm, the
maximum degree of rotational movement (maxRot) ≤ 2◦ and

1http://lfcd.psych.ac.cn/ccs.html

the maximum distance of translational movement (maxTran)
≤ 2 mm.

Network Centrality Mapping and Statistics
The procedure of mapping the centrality metrics for individual
functional connectomes completely followed the methods
described by Zuo et al. (2012), except that the connectomes
were constructed on cortical surfaces. The fsaverage5 cortical
surface meshes consisted of 17,064 vertices with the preprocessed
rfMRI time series. Fisher-z transformed Pearson’s correlations
were calculated between each paired vertices. The significance
above the threshold (p = 0.0001, uncorrected) was used
to determine an edge connecting. This generated individual
binary adjacency matrices for subsequent network centrality
computation. Specifically, given a node, its degree centrality
(DC) was computed as the number of the edges connecting to
the node, and commonly measured a nodal direct connectivity
at a local network scale. SC measures the participation of
a node in all subgraphs at a meso network scale and is
calculated based on the first 20 eigenvalues and eigenvectors
of the adjacency matrix. At a global network scale, eigenvector
centrality (EC), which is the first eigenvector of the adjacency
matrix, is the one that corresponds to the largest eigenvalue
and can measure global features of the graph. PC is a
variant EC and introduces a small probability of 0.15 for
random damping to handle walking traps on a graph. All
these four metrics of network centrality have been shown
with moderate to high test-retest reliability in 3D volume
space and should be more reliable for their versions of 2D
surface space as computed in the present work, due to the
previous observation on the reliability improvement of local
functional connectivity with updates of computational space
(Zuo et al., 2013).

For each of the four types of network centrality described
above, its full cortical maps were first adjusted by individual
intracranial volume and then fed the subsequent FreeSurfer
group analysis to evaluate various group-level statistics. A
FSGD (FreeSurfer Group Descriptor) file was constructed for
the four groups of participants (NC, SCD, aMCI, and AD)
to implement a set of ANCOVA using general linear models
that considered diagnosis, sex, age, and years of education as
covariates with three contrasts of group comparisons (SCD vs.
NC, aMCI vs. NC, AD vs. NC). The vertex-wise significance
values for each contrast of the group comparisons were
corrected with false discovery rate (FDR) method (corrected
p = 0.05, minimal surface cluster area = 25 mm2). The
partial correlations between the mean centrality at cluster-
level within most abnormal topology metrics (≥ 2 stages of
SCD, aMCI, and AD) and behavioral measurements (MMSE,
AVLT, MoCA) were also evaluated after controlling age, sex,
and years of education. We used the Bonferroni corrections
for multiple comparisons at P < 0.05 and for groups at all
three scales.

For the purpose of locating the network at both network-
level and area-level, we reported the results with brain regions
showing significant changes across the groups using the cortical
parcellation of both functional networks (see Figure 1A), derived
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by Yeo et al. (2011) and anatomical Destrieux Atlas derived by
Fischl et al. (2004).

RESULTS

Age, sex and years of education were well matched among
groups. There were significant differences in MMSE, AVLT
and MoCA scores among groups (p < 0.001). AD had
significantly lower scores than the other three groups by
subgroups analyzed (Table 1).

Meso-scale Network Centrality Reduced in
SCD
Compared with NC, SC was decreased in the left somatomotor
network (paracentral cortex) and the right visual network
(occipital cortex) in SCD patients (Table 2, Figure 1B).

Multi-scale Network Centrality Altered in
aMCI
Compared with NC, DC was decreased in the right default
network (orbital gyri), the limbic network (left orbital and
right parahippocampal areas) and the right frontoparietal
control network (middle temporal area) in aMCI (Figure 1C).

In aMCI, SC was decreased in the limbic network (left
orbital cortex and right parahippocampal area), the left
default network (the orbital cortex), the right dorsal attention
network (superior parietal areas) and the right frontoparietal
control network (middle temporal area; Figure 1D). In aMCI,
PC was decreased in the default network (bilateral orbital
gyrus, right middle temporal and left frontal areas), the
right somatomotor network (precentral area), the right dorsal
attention network (superior parietal area) and the bilateral
limbic network (orbital areas), whereas, it was increased in
the left somatomotor network (paracentral area; Table 3,
Figure 1E).

Global-Scale Network Centrality Enhanced
in AD
Compared with NC, AD had an increase of global network
centrality but lacked any centrality changes at both local and
meso scales (Table 4). PC was increased in the visual network
(occipital areas), the left somatomotor network (paracentral
area), the left limbic network (temporal pole), the left dorsal
attention network (inferior temporal area), the left default
network (superior frontal gyrus) and the right ventral attention

FIGURE 1 | Multi-scale network centrality changes in AD progression. (A) The seven networks map in Yeo et al. (2011). (B) SC in SCD vs. NC. The reduced SC in
SCD was located in the left somatomotor network (left paracentral cortex) and the right visual network (right occipital cortex). (C) DC in aMCI vs. NC. The reduced
DC in aMCI were located in the right default network (orbital gyri), the right limbic network (parahippocampal areas) and the right frontoparietal control network
(middle temporal area). (D) SC in aMCI vs. NC. Except for the default, limbic and frontoparietal control network, the reduced SC in aMCI extended to the left default
network (orbital cortex) and the right dorsal attention network (superior parietal areas). (E) PC in aMCI vs. NC. Significant decreases of PC in aMCI were observed
within the default network (right middle temporal and bilateral orbital gyrus), the right somatomotor network (precentral area), the right dorsal attention network
(superior parietal area) and the left limbic network (orbital areas), whereas significant increases of PC in aMCI were detectable within the left somatomotor network
(paracentral area). (F) PC in AD vs. NC. The increased PC in AD were located in the visual network (occipital areas), the left somatomotor network (paracentral area),
the left limbic network (temporal pole), the left dorsal attention network (inferior temporal area), the left default network (superior frontal gyrus) and the right ventral
attention network (superior frontal area). (G) EC in AD vs. NC. A significant increase of EC was found in the right frontoparietal control network (inferior temporal
sulcus). All the above tests were thresholded at an false discovery rate (FDR) corrected significance level of p < 0.05. Gray curves indicate the boundaries according
to the seven networks map in Yeo et al. (2011). Abbreviations: NC = normal control; SCD = subjective cognitive decline; aMCI = amnestic mild cognitive impairment;
AD = Alzheimer’s disease; DC = degree centrality; SC = subgraph centrality; PC = page-rank centrality; EC = eigenvector centrality.
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TABLE 1 | Demographic information and behavioral measurements.

NC (40) SCD (32) aMCI (37) AD (30) F/ Chi-square P

Age (Years) 68.07 ± 6.44 66.70 ± 5.98 69.67 ± 7.48 69.61 ± 9.53 1.213 0.307
Sex (M/F) 16/24 12/20 19/18 12/18 1.693 0.638
Education (Years) 12.00 ± 4.44 11.59 ± 4.06 11.22 ± 3.97 10.03 ± 4.71 1.276 0.285
MMSE 28.93 ± 1.27a 27.53 ± 1.90b 26.49 ± 1.68b 17.27 ± 5.19c 113.595 <0.001

AVLT
Immediate recall 9.15 ± 1.82a 7.74 ± 1.77b 6.12 ± 1.82c 3.78 ± 1.29d 57.210 <0.001

AVLT
Delayed recall 9.85 ± 2.77a 8.28 ± 2.69a 4.27 ± 238b 1.04 ± 1.56c 75.514 <0.001

AVLT
Recognition 12.03 ± 2.69a 10.50 ± 2.63a 8.35 ± 3.61b 4.41 ± 2.85c 37.825 <0.001
MoCA 27.06 ± 1.98a 26.24 ± 1.74a 20.80 ± 3.56b 13.07 ± 4.78c 109.004 <0.001

Differences among diagnosis categories (NC, SCD, aMCI and AD) were tested with ANOVAs (LSD or Dunnett’s T3 post hoc comparisons; p < 0.05). Each subscript letter
denotes a subset of diagnosis categories whose column proportions do not differ significantly from each other at the 0.05 level. Abbreviations: NC, normal control; SCD, subjective
cognitive decline; aMCI, amnestic Mild Cognitive Impairment; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination; AVLT, Auditory Verbal Learning Test; MoCA, Montreal
Cognitive Assessment.

TABLE 2 | Full list of brain regions with significant SC differences between SCD and NC.

Contrast Index Hemi Brain regions Max (-log10p) Size (mm2) X Y Z NV

SCD < NC SC LH G_and_S_paracentral −10.643 63.72 −6.9 −22.9 68.2 12
RH Pole_occipital −7.409 91.49 20.2 −98.0 −2.9 7

Abbreviations: SCD, subjective cognitive decline; NC, normal control; SC, subgraph centrality; LH, left hemisphere; RH, right hemisphere; X, Y, Z, coordinates of primary peak locations
in the Talairach space; NV, number of vertex.

TABLE 3 | Full list of brain regions with significant centralities differences between aMCI and NC.

Contrast Index Hemi Brain regions Max (-log10p) Size (mm2) X Y Z NV

aMCI < NC DC LH G_orbital −10.453 29.37 −24.8 11.6 −16.7 5
RH G_temporal_middle −10.045 119.04 60.7 −38.4 −9.8 10

G_orbital −7.971 36.91 29.2 19.4 −18.4 6
G_oc-temp_med-Parahip −7.005 47.24 23.1 −19.3 −22.6 7

SC LH G_orbital −11.003 39.17 −33.6 25.0 −16.9 4
G_orbital −9.343 34.14 −24.8 11.6 −16.7 6
G_orbital −6.219 44.71 −43.7 35.9 −14.4 7

RH G_parietal_sup −8.546 47.68 16.6 −67.5 45.7 5
G_temporal_middle −7.911 69.76 62.7 −36.0 −9.6 6
G_oc-temp_med-Parahip −5.842 40.90 25.1 −20.0 −18.9 6

PC LH G_orbital −10.316 78.77 −33.6 25.0 −16.9 8
G_front_middle −6.922 97.50 −22.3 59.7 5.6 7

RH G_orbital −11.358 44.44 29.2 19.4 −18.4 7
G_precentral −10.918 47.73 18.6 −13.7 64.9 7
G_parietal_sup −10.064 47.68 16.6 −67.5 45.7 5
G_temporal_middle −8.712 60.58 54.5 0.1 −26.2 5

aMCI > NC PC LH G_and_S_paracentral 10.152 33.13 −7.2 −20.0 68.4 6

Abbreviations: aMCI, amnestic Mild Cognitive Impairment; NC, normal control; DC, degree centrality; SC, subgraph centrality; PC, page-rank centrality; LH, left hemisphere; RH, right
hemisphere; X, Y, Z, coordinates of primary peak locations in the Talairach space; NV, number of vertex.

TABLE 4 | Full list of brain regions with significant centralities differences between AD and NC.

Contrast Index Hemi Brain regions Max (-log10p) Size (mm2) X Y Z NV

AD > NC PC LH G_and_S_paracentral 11.596 87.73 −6.9 −22.9 68.2 16
Pole_occipital 11.142 90.27 −13.3 −99.4 5.4 8
Pole_temporal 10.471 85.61 −41.9 −0.1 −29.4 6
G_temporal_inf 8.850 99.45 −50.8 −45.8 −14.6 7
S_front_sup 4.067 80.70 −31.7 14.7 43.2 7

RH Pole_occipital 11.211 284.74 20.2 −98.0 −2.9 22
G_front_sup 8.651 56.65 10.7 4.5 61.3 8

EC RH S_temporal_inf 9.807 90.48 56.8 −44.2 −10.8 7

Abbreviations: AD, Alzheimer’s disease; NC, normal control; PC, page-rank centrality; EC, eigenvector centrality; LH, left hemisphere; RH, right hemisphere; X, Y, Z, coordinates of
primary peak locations in the Talairach space; NV, number of vertex.
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FIGURE 2 | Post hoc cluster-level analyses in the left somatomotor network. Multi-scale centrality and behavioral performance in the left somatomotor network
region among NC, SCD, aMCI and AD. Compared with NC, the area of the left somatomotor network showed centralities change at local, meso and global scales in
AD progression. Mean DC, SC and EC values decreased in SCD, increased in aMCI and AD. The scatter plot exhibited negative association between: (1) mean SC
values and auditory verbal learning test (AVLT)-Recognition scores in the NC (r = −0.4093, p < 0.05); and (2) mean EC values and Mini-Mental State Examination
(MMSE) total scores in the AD (r = −0.4908, p < 0.05).

network (superior frontal area; Figure 1F). EC was increased
in the right frontoparietal control network (inferior temporal
sulcus; Figure 1G).

Post hoc Cluster-Level Analyses
Compared with NC, the area of the left somatomotor network
showed changes in centralities at local, meso and global scales
in AD progression. DC, SC, PC and EC decreased in SCD but
increased in aMCI and AD. When the relationship between
the centralities and cognitive performance was deeply analyzed,
negative associations between SC and AVLT-Recognition scores
in NC (r = −0.4093, p < 0.05) and between EC and MMSE
total scores in AD (r = −0.4908, p < 0.05) were found
(Figure 2).

Compared with NC, the area of the right frontoparietal
control network also exhibited multi-scale network centrality

changes in AD progress. SCD had a decrease of DC and PC and
an increase of SC and EC. DC, SC, PC, and EC decreased in aMCI
but increased in AD. SCD group showed a significant positive
association between DC and MoCA scores (Figure 3).

DISCUSSION

The main finding of the present study is that different functional
network centralities changed at different scale levels across the
spectrum of SCD, aMCI, and AD. aMCI exhibited multi-scale
abnormal centralities, while SCD and AD exhibited single-scale
abnormal centrality: (1) primary, meso-scale, and impairment
in SCD; (2) both primary and associative, impairment and
compensation coexisted in aMCI; and (3) both primary
and associative, extended global compensation in widespread
networks in AD.
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FIGURE 3 | Post hoc cluster-level analyses in the right frontoparietal control network. aMCI showed the lowest centralities at local, meso and global scales in the
area of the right frontoparietal control network. The scatter plot exhibited a positive association between mean DC values and Montreal Cognitive Assessment
(MoCA) total scores in the SCD (r = 0.5076, p < 0.05).

Meso-scale Topological Impairment in
Primary Network in SCD
In this study, we observed decreased meso centrality (SC)
in the left somatomotor network and right visual network
in individuals with SCD. It is worth noting that we found
no enhanced centralities in SCD. Compensatory mechanisms,
frequently proposed in aMCI (Qi et al., 2010) and AD
(Agosta et al., 2012), seem to have not yet happened at this
point since brain network impairments are not yet severe
enough. The motor system receives sensory information for
movement control (Rizzolatti et al., 1997). Many pyramidal
and extrapyramidal motor impairments affect a substantial
portion of AD patients and progressively worsen along with
cognitive impairment (Albers et al., 2015). The onset of
accelerated rates of motor decline can occur 12 years before the
onset of MCI in initially cognitively healthy adults (Buracchio
et al., 2010). In the present study, the decrement of multi-
scale centrality in the somatomotor network may indicate
motor dysfunction and further supports the theory that motor
impairment could occur at an early stage of AD, or even
precede the onset of the cognitive impairment for AD by a
decade and longer (Albers et al., 2015). The previous study
has detected an increased functional brain network efficiency
during the audiovisual task in aging (Wang et al., 2018a),
while there is a negative connection between within-network
functional connectivity in the visual network and levels of
SCD (Contreras et al., 2017). These results indicate visual
network impairment beginning from SCD. Our result provides

further evidence for topological impairment in the visual
network, which may be associated with early indications of
cognitive impairment. In summary, these findings might help
us to better identify or understand early, multi-scale primary
network (e.g., sensory and motor) impairments caused by the
early AD.

Multi-scale Topological Impairment and
Compensation Activated in aMCI
Global-scale centrality impairment and compensation in primary
network coexist in aMCI. We found both increased and
decreased PC in aMCI in the somatomotor network. Earlier
studies have reported both increased and decreased brain
connectivity in aMCI as well (Qi et al., 2010; Wang et al.,
2015). In contrast to SCD with only decreased centrality at
the meso scale and AD with only increased centrality at
global-scale, aMCI exhibited bidirectional alterations of brain
network centrality at the global-scale. Summarizing the content,
we draw a conclusion that disconnection syndrome (Qiu
et al., 2016) and compensation in primary network coexist
in aMCI.

Multi-scale centrality impairment in associative networks
occurs in aMCI. We found decreased DC, SC, and PC in
the limbic and default mode network, reduced SC and PC in
the dorsal attention network, as well as declined DC and SC
in the frontoparietal control network in aMCI. In previous
studies, atrophy (Callen et al., 2001) and hypometabolism
(Nestor et al., 2003) in the limbic network in AD have

Frontiers in Neuroinformatics | www.frontiersin.org 7 April 2019 | Volume 13 | Article 26

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Wang et al. Network Connectivity Impairments in AD Progression

been widely reported. Brain alterations in the default mode
network in aMCI, such as amyloid deposition (Agosta et al.,
2012), atrophy (Thompson et al., 2003), decreased activity
(Sorg et al., 2007), and reduced connectivity (Qi et al., 2010)
have also been reported. Our findings in the two networks
(limbic and default) are consistent with previous studies and
add the evidence for functional disconnection in aMCI. In the
present study, significant meso- and global-scale topological
impairments were found in the dorsal attention network but
not in the ventral attention network. These findings suggest
that functional connectivity appears to be preferentially affected
in the dorsal attention network and preserved or less impaired
in the ventral attention network in aMCI (Sorg et al., 2007;
Qian et al., 2015). Dorsal attention network is involved in
the endogenous attention orienting (top-down) process (Fox
et al., 2006), while ventral attention network is responsible for
reorienting attention in response to salient sensory stimuli (Fox
et al., 2006; bottom-up process). In aMCI patients, deteriorations
in goal-relevant processing such as divided attention and
selective attention (Dannhauser et al., 2005; Redel et al., 2010)
have occurred, while still retain the ability for bottom-up
processing (Zhang et al., 2015). This asymmetric pattern of
network topology impairments of attention networks might help
us better understand attention deficits in patients with aMCI.
As for the frontoparietal control network, previous studies are
not quite consistent. One study reported decreased connectivity
in aMCI (Munro et al., 2015), while another one reported
increased connectivity (Agosta et al., 2012). The discrepancy
between these studies may be attributed to differences in
severity of cognitive impairment and diagnostic criteria for
patients. Centrality alterations, at the local and meso rather
than global scales in our study, may suggest relatively less
impairment in the frontoparietal control network in the stage
of aMCI.

Global Compensation in All Seven
Networks in AD
An intriguing finding of this study is that we probe a unique
pattern of compensation in AD patients: enhanced global
centrality in large scale was observed in all seven networks
(both primary and associative networks). This result is consistent
with previous studies, which revealed increased activity and
connectivity in AD (Zhou et al., 2010; Agosta et al., 2012). A
possible reason for such augments in AD may be that additional
neural resources are recruited to compensate for losses. And
this hypothesis has been supported by earlier studies showing
that patients with AD are able to succeed in episodic memory
tasks due to compensatory neuronal activity (Buckner, 2004;
Schwindt and Black, 2009). There is an alternate network, a
compensation network, consisting of the left posterior temporal
cortex, calcarine cortex, posterior cingulate, and the vermis
(Stern et al., 2000). Our study showed that centrality enhanced
at the global scale in AD, which suggests that compensation
in this stage of the disease has extended from local to remote.
Furthermore, compensation is also active in both primary and
associative networks.

Progressed From Local to Global,
Impairment to Compensation in AD
Continuum
Our previous study showed that the rich club of the
human connectome was disrupted from SCD to AD (Yan
et al., 2018). In the current study, SCD exhibited only
primary network (sensory and motor) impairments, while
aMCI and AD progressed to associative network impairments,
such as limbic, default, attention and frontoparietal control
networks. In addition, SCD displayed meso impairment,
aMCI demonstrated local, meso and global scale alterations
(impairment and compensation coexist), but AD had only
global compensation. These findings show a progressive pattern
of functional brain network in AD continuum: impairment
occurs as early as in SCD (decreased SC) and continues
and becomes severe enough in aMCI, then compensation
is warranted.

When focused on both time and spatial cluster-level analysis,
two interesting areas were found. In the left somatomotor
network, centrality at all three levels decreased in SCD but
increased in aMCI and AD. In addition, augmented centrality
at global-scale only in AD exhibited a significantly negative
relationship with cognitive performance (Figure 2). These
findings provide evidence that compensatory mechanisms
followed with clinical mechanisms progressed. As to the right
frontoparietal control network (Figure 3), centralities decreased
at the local scale, increased at the meso scale and coexisted
at the global scale in SCD, while they decreased in aMCI and
increased in AD at all three levels. Furthermore, only decreased
centrality at local-scale in SCD showed a significant positive
association with cognitive performance. We proposed that
local associative network impairment directly affected cognitive
function at the very early stage of AD, but subtle compensatory
function at the meso and global scale balanced further
cognitive impairment.

Based on the results from the current study, we hypothesize
that brain network impairment starts in the primary network
in SCD. Impairment in the associative network also starts at
the local level at this stage and may contribute to the cognitive
decline. As associative network impairment extends from local
to meso and global scales in aMCI, compensatory mechanisms
in the primary network are activated. Such a progressive pattern
across the spectrum of SCD, aMCI, and AD, may underlie
increased network topological scale and gives a dynamical
description of the pathology of AD progression.

Limitations
Several limitations should be mentioned here: first, our study
was not a real cohort, a longitudinal design in the future
would still be necessary to quantitatively elucidate its dynamic
topological changes. Second, we only had resting state functional
magnetic resonance imaging (fMRI) data for this study, adding
biomarkers will be more persuasive. Third, the fMRI data sets
in this study had limited spatial and temporal resolutions,
better spatial-temporal resolutions would definitely strengthen
our conclusion.
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CONCLUSION

SCD had an isolated decrease of SC in the primary (somatomotor
and visual) networks. aMCI had both a decrease and an increase
of global centrality in the primary motor network, as well
as decreases at all three levels in associative (frontoparietal
control, attention, limbic and default) network areas. AD had
increased centrality at the global scale in all seven networks.
In the cluster level, brain network impairment starts in
the primary network in SCD. Impairment in the associative
network also starts at the local level at this stage and may
contribute to the cognitive decline. As associative network
impairment extends from local to meso and global scales in
aMCI, compensatory mechanisms in the primary network are
activated. Such a progressive pattern across the spectrum of SCD,
aMCI, and AD, may underlie increased network topological
scale and gives a dynamical description on the pathology of
AD progression.
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