5,456 research outputs found

    Novel drug carriers: From grafted polymers to cross-linked vesicles

    Get PDF
    A simple and straightforward method of self-assembling grafted copolymers was developed to fabricate cross-linked polymer vesicles, which could conjugate anticancer drug cis-platinum and possess the capability of a high drug loading content, and a steady release rate

    Development of a Robust PET-RAFT Polymerization Using Graphitic Carbon Nitride (g-C3N4)

    Get PDF
    The metal-free semiconductor, graphitic carbon nitride (g-C3N4), was introduced into RAFT polymerization for the first time. The production of linear polyacrylate and polyacrylamide has been achieved via PET-RAFT polymerization using g-C3N4 as a photoactive organocatalyst without prior deoxygenation. The resulting polymers display controlled molecular weights, narrow polymer dispersities, and high end-group fidelity as exemplified by 1H NMR analysis, MALDI-TOF-MS measurement, and chain extension experiment. Temporal control is illustrated by intermittent light and dark cycles, with polymer growth arrested in the absence of irradiation. The effects of changing RAFT agents (i.e., trithiocarbonates), solvents, catalyst concentrations, and degrees of polymerization in this system have been investigated. The successful polymerization of nonpurified monomer (i.e., still containing radical inhibitors) demonstrates the robust nature of the presented PET-RAFT system

    Fine-grained action recognition by motion saliency and mid-level patches

    Get PDF
    Effective extraction of human body parts and operated objects participating in action is the key issue of fine-grained action recognition. However, most of the existing methods require intensive manual annotation to train the detectors of these interaction components. In this paper, we represent videos by mid-level patches to avoid the manual annotation, where each patch corresponds to an action-related interaction component. In order to capture mid-level patches more exactly and rapidly, candidate motion regions are extracted by motion saliency. Firstly, the motion regions containing interaction components are segmented by a threshold adaptively calculated according to the saliency histogram of the motion saliency map. Secondly, we introduce a mid-level patch mining algorithm for interaction component detection, with object proposal generation and mid-level patch detection. The object proposal generation algorithm is used to obtain multi-granularity object proposals inspired by the idea of the Huffman algorithm. Based on these object proposals, the mid-level patch detectors are trained by K-means clustering and SVM. Finally, we build a fine-grained action recognition model using a graph structure to describe relationships between the mid-level patches. To recognize actions, the proposed model calculates the appearance and motion features of mid-level patches and the binary motion cooperation relationships between adjacent patches in the graph. Extensive experiments on the MPII cooking database demonstrate that the proposed method gains better results on fine-grained action recognition

    Multi-view urban scene reconstruction in non-uniform volume

    Full text link
    This paper presents a new fully automatic approach for multi-view urban scene reconstruction. Our algorithm is based on the Manhattan-World assumption, which can provide compact models while preserving fidelity of synthetic architectures. Starting from a dense point cloud, we extract its main axes by global optimization, and construct a nonuniform volume based on them. A graph model is created from volume facets rather than voxels. Appropriate edge weights are defined to ensure the validity and quality of the surface reconstruction. Compared with the common pointcloud- to-model methods, the proposed methodology exploits image information to unveil the real structures of holes in the point cloud. Experiments demonstrate the encouraging performance of the algorithm. © 2013 SPIE

    Magnetodielectric effect of Bi6Fe2Ti3O18 film under an ultra-low magnetic field

    Full text link
    Good quality and fine grain Bi6Fe2Ti3O18 magnetic ferroelectric films with single-phase layered perovskite structure have been successfully prepared via metal organic decomposition (MOD) method. Results of low-temperature magnetocapacitance measurements reveal that an ultra-low magnetic field of 10 Oe can produce a nontrivial magnetodielectric (MD) response in zero-field-cooling condition, and the relative variation of dielectric constants in magnetic field is positive, i.e., MD=0.05, when T<55K, but negative with a maximum of MD=-0.14 when 55K<T<190K. The magnetodielectric effect appears a sign change at 55K, which is due to transition from antiferromagnetic to weak ferromagnetic; and vanishes abruptly around 190K, which is thought to be associated with order-disorder transition of iron ion at B site of perovskite structures. The ultra-low-field magnetodielectric behaviour of Bi6Fe2Ti3O18 film has been discussed in the light of quasi-two-dimension unique nature of local spin order in ferroelectric film. Our results allow expectation on low-cost applications of detectors and switches for extremely weak magnetic fields in a wide temperature range 55K-190K.Comment: 10 pages 4 figures, planned to submit to J. Phys.: Condensed Matte

    Singular Effects of Spin-Flip Scattering on Gapped Dirac Fermions

    Full text link
    We investigate the effects of spin-flip scattering on the Hall transport and spectral properties of gapped Dirac fermions. We find that in the weak scattering regime, the Berry curvature distribution is dramatically compressed in the electronic energy spectrum, becoming singular at band edges. As a result the Hall conductivity has a sudden jump (or drop) of e2/2he^2/2h when the Fermi energy sweeps across the band edges, and otherwise is a constant quantized in units of e2/2he^2/2h. In parallel, spectral properties such as the density of states and spin polarization are also greatly enhanced at band edges. Possible experimental methods to detect these effects are discussed

    From UV to NIR: A Full-Spectrum Metal-Free Photocatalyst for Efficient Polymer Synthesis in Aqueous Conditions

    Get PDF
    Photo‐mediation offers unparalleled spatiotemporal control over controlled radical polymerizations (CRP). Photo‐induced electron/energy transfer reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization is particularly versatile owing to its oxygen tolerance and wide range of compatible photocatalysts. In recent years, broadband‐ and near‐infrared (NIR)‐mediated polymerizations have been of particular interest owing to their potential for solar‐driven chemistry and biomedical applications. In this work, we present the first example of a novel photocatalyst for both full broadband‐ and NIR‐mediated CRP in aqueous conditions. Well‐defined polymers were synthesized in water under blue, green, red, and NIR light irradiation. Exploiting the oxygen tolerant and aqueous nature of our system, we also report PET‐RAFT polymerization at the microliter scale in a mammalian cell culture medium
    • 

    corecore