31 research outputs found

    Sodium Diffusion through Aluminum-Doped Zeolite BEA System: Effect of Water Solvation

    Get PDF
    To investigate the effect of hydration on the diffusion of sodium ions through the aluminum-doped zeolite BEA system (Si/Al = 30), we used the grand canonical Monte Carlo (GCMC) method to predict the water absorption into aluminosilicate zeolite structure under various conditions of vapor pressure and temperature, followed by molecular dynamics (MD) simulations to investigate how the sodium diffusion depends on the concentration of water molecules. The predicted absorption isotherm shows first-order-like transition, which is commonly observed in hydrophobic porous systems. The MD trajectories indicate that the sodium ions diffuse through zeolite porous structures via hopping mechanism, as previously discussed for similar solid electrolyte systems. These results show that above 15 wt % hydration (good solvation regime) the formation of the solvation cage dramatically increases sodium diffusion by reducing the hopping energy barrier by 25% from the value of 3.8 kcal/mol observed in the poor solvation regime

    Exogenous Melatonin Improves Cold Tolerance of Strawberry (Fragaria × ananassa Duch.) through Modulation of DREB/CBF-COR Pathway and Antioxidant Defense System

    Get PDF
    The strawberry (Fragaria × ananassa Duch.) is an important fruit crop cultivated worldwide for its unique taste and nutritional properties. One of the major risks associated with strawberry production is cold damage. Recently, melatonin has emerged as a multifunctional signaling molecule that influences plant growth and development and reduces adverse consequences of cold stress. The present study was conducted to investigate the defensive role of melatonin and its potential interrelation with abscisic acid (ABA) in strawberry plants under cold stress. The results demonstrate that melatonin application conferred improved cold tolerance on strawberry seedlings by reducing malondialdehyde and hydrogen peroxide contents under cold stress. Conversely, pretreatment of strawberry plants with 100 μM melatonin increased soluble sugar contents and different antioxidant enzyme activities (ascorbate peroxidase, catalase, and peroxidase) and non-enzymatic antioxidant (ascorbate and glutathione) activities under cold stress. Furthermore, exogenous melatonin treatment stimulated the expression of the DREB/CBF—COR pathways’ downstream genes. Interestingly, ABA treatment did not change the expression of the DREB/CBF—COR pathway. These findings imply that the DREB/CBF-COR pathway confers cold tolerance on strawberry seedlings through exogenous melatonin application. Taken together, our results reveal that melatonin (100 μM) pretreatment protects strawberry plants from the damages induced by cold stress through enhanced antioxidant defense potential and modulating the DREB/CBF—COR pathway. View Full-Tex

    Hydrochemical Characteristics and Quality Assessment of Groundwater under the Impact of Seawater Intrusion and Anthropogenic Activity in the Coastal Areas of Zhejiang and Fujian Provinces, China

    Get PDF
    AbstractCoastal groundwater is an important resource in the developed region associated with human health and sustainable economic development. To identify the origins of salinity and evaluate the impact of water-rock interactions, seawater intrusion (SWI), and evaporation on groundwater in the coastal areas of Zhejiang and Fujian provinces, a comprehensive investigation was performed. Meanwhile, nitrate and fluoride indicators resulting from the anthropogenic activity and SWI were also considered. At last, the water quality index (WQI) of coastal groundwater was evaluated with geochemical and multivariate statistical methods. The results indicated that (1) the groundwater in coastal areas of Zhejiang and Fujian provinces has been affected by SWI to varying degrees. The analysis of selected ion ratios (Na+/Cl− and Br−/Cl−) and isotopic compositions showed that SWI is the predominant cause of increasing salinity in the groundwater of Zhejiang Province, while the cause is water-rock interactions (ion exchange and mineral weathering) in Fujian Province. The hydrochemical evolution path of groundwater in Zhejiang Province is Ca/Mg-HCO3 to Na-Cl, while a different pattern of Ca/Mg-HCO3 to Na (Mg/Ca)-Cl occurs in Fujian Province. However, the trend of SWI development in both provinces was freshening. (2) Nitrification, sewage infiltration, and SWI increased the NO3− content in groundwater. Some of the NO3− concentration in Fujian Province exceeds the standard, and the nitrogen pollution was more serious than in Zhejiang Province. The F− content in coastal groundwater was affected by SWI and mineral dissolution; the F− content in Zhejiang Province was higher than in Fujian Province, which was close to the groundwater standard limit. The average WQI value of Zhejiang was 103.61, and the WQI of Fujian was 61.69, indicating that the coastal groundwater quality in Fujian Province was better than in Zhejiang Province. The results of the study revealed the impact of SWI and anthropogenic activity on groundwater in the southern coastal zone of China and will be valuable for sustainable groundwater resource management

    New Germplasm for Breeding: Pink-flowered and White-fruited Strawberry

    Get PDF
    Most strawberry plants have white flowers and red fruit. We developed a new strawberry selection with pink flowers and white fruit, and named it G23. Basic phenotypic data were recorded over years of observation and experimentation with the flower crown diameter, petal color, and rate of fruit set, as well as fruit skin color, flesh color, seed color and attachment status, fruit weight and shape, soluble solids contents, and firmness. We found that G23 bloomed with a stable pink flower and produced white fruit consistently with a relatively high fruit-set rate compared with its female parent, ‘Pink Panda’. G23 displayed high resistance to Fusarium wilt (Fusarium oxysporum) and anthracnose (Colletotrichum spp.). It is also tolerant of high temperatures (up to 40 °C) and long-term drought. The asexual propagation ability of G23 is high, with ∼60 to 100 stolon ramets formed during the summer. In summary, this new pink-flowered and white-fruited strawberry germplasm is suitable for ornamental use, as a result of its remarkable flowering and fruiting characteristics. In addition, it provides opportunities for innovative strawberry germplasm for future breeding

    Identification of Imprinted Genes Based on Homology: An Example of Fragaria vesca

    No full text
    Genomic imprinting has drawn increasing attention in plant biology in recent years. At present, hundreds of imprinted genes have been identified in various plants, and some of them have been reported to be evolutionarily conserved in plant species. In this research, 17 candidate genes in Fragaria vesca were obtained based on the homologous imprinted genes in Arabidopsis thaliana and other species. We further constructed reciprocal crosses of diploid strawberry (F. vesca) using the varieties 10-41 and 18-86 as the parents to investigate the conservation of these imprinted genes. Potentially informative single nucleotide polymorphisms (SNPs) were used as molecular markers of two parents obtained from candidate imprinted genes which have been cloned and sequenced. Meanwhile, we analyzed the SNP site variation ratios and parent-of-origin expression patterns of candidate imprinted genes at 10 days after pollination (DAP) endosperm and embryo for the hybrids of reciprocal cross, respectively. A total of five maternally expressed genes (MEGs), i.e., FvARI8, FvKHDP-2, FvDRIP2, FvBRO1, and FvLTP3, were identified in the endosperm, which did not show imprinting in the embryo. Finally, tissues expression analysis indicated that the five imprinted genes excluding FvDRIP2 mainly expressed in the endosperm. This is the first report on imprinted genes of Fragaria, and we provide a simple and rapid method based on homologous conservation to screen imprinted genes. The present study will provide a basis for further study of function and mechanism of genomic imprinting in F. vesca

    Genome-Wide Identification and Characterization of <i>Argonaute</i>, <i>Dicer-like</i> and <i>RNA-Dependent RNA Polymerase</i> Gene Families and Their Expression Analyses in <i>Fragaria</i> spp.

    No full text
    In the growth and development of plants, some non-coding small RNAs (sRNAs) not only mediate RNA interference at the post-transcriptional level, but also play an important regulatory role in chromatin modification at the transcriptional level. In these processes, the protein factors Argonaute (AGO), Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) play very important roles in the synthesis of sRNAs respectively. Though they have been identified in many plants, the information about these gene families in strawberry was poorly understood. In this study, using a genome-wide analysis and a phylogenetic approach, 13 AGO, six DCL, and nine RDR genes were identified in diploid strawberry Fragaria vesca. We also identified 33 AGO, 18 DCL, and 28 RDR genes in octoploid strawberry Fragaria × ananassa, studied the expression patterns of these genes in various tissues and developmental stages of strawberry, and researched the response of these genes to some hormones, finding that almost all genes respond to the five hormone stresses. This study is the first report of a genome-wide analysis of AGO, DCL, and RDR gene families in Fragaria spp., in which we provide basic genomic information and expression patterns for these genes. Additionally, this study provides a basis for further research on the functions of these genes and some evidence for the evolution between diploid and octoploid strawberries

    Identifying Genome-Wide Sequence Variations and Candidate Genes Implicated in Self-Incompatibility by Resequencing <i>Fragaria viridis</i>

    No full text
    It is clear that the incompatibility system in Fragaria is gametophytic, however, the genetic mechanism behind this remains elusive. Eleven second-generation lines of Fragaria viridis with different compatibility were obtained by manual self-pollination, which can be displayed directly by the level of fruit-set rate. We sequenced two second-generation selfing lines with large differences in fruit-set rate: Ls-S2-53 as a self-incompatible sequencing sample, and Ls-S2-76 as a strong self-compatible sequencing sample. Fragaria vesca was used as a completely self-compatible reference sample, and the genome-wide variations were identified and subsequently annotated. The distribution of polymorphisms is similar on each chromosome between the two sequencing samples, however, the distribution regions and the number of homozygous variations are inconsistent. Expression pattern analysis showed that six candidate genes were significantly associated with self-incompatibility. Using F. vesca as a reference, we focused our attention on the gene FIP2-like (FH protein interacting protein), associated with actin cytoskeleton formation, as the resulting proteins in Ls-S2-53 and Ls-S2-76 have each lost a number of different amino acids. Suppression of FIP2-like to some extent inhibits germination of pollen grains and growth of pollen tubes by reducing F-actin of the pollen tube tips. Our results suggest that the differential distribution of homozygous variations affects F. viridis fruit-set rate and that the fully encoded FIP2-like can function normally to promote F-actin formation, while the new FIP2-like proteins with shortened amino acid sequences have influenced the (in)compatibility of two selfing lines of F. viridis

    GDS: A Genomic Database for Strawberries (Fragaria spp.)

    No full text
    Strawberry species (Fragaria spp.) are known as the &ldquo;queen of fruits&rdquo; and are cultivated around the world. Over the past few years, eight strawberry genome sequences have been released. The reuse of these large amount of genomic data, and the more large-scale comparative analyses are very challenging to both plant biologists and strawberry breeders. To promote the reuse and exploration of strawberry genomic data and enable extensive analyses using various bioinformatics tools, we have developed the Genome Database for Strawberry (GDS). This platform integrates the genome collection, storage, integration, analysis, and dissemination of large amounts of data for researchers engaged in the study of strawberry. We collected and formatted the eight published strawberry genomes. We constructed the GDS based on Linux, Apache, PHP and MySQL. Different bioinformatic software were integrated. The GDS contains data from eight strawberry species, as well as multiple tools such as BLAST, JBrowse, synteny analysis, and gene search. It has a designed interface and user-friendly tools that perform a variety of query tasks with a few simple operations. In the future, we hope that the GDS will serve as a community resource for the study of strawberries

    The complete chloroplast genome sequence of strawberry (Fragaria  × ananassa Duch.) and comparison with related species of Rosaceae

    No full text
    Compared with other members of the family Rosaceae, the chloroplast genomes of Fragaria species exhibit low variation, and this situation has limited phylogenetic analyses; thus, complete chloroplast genome sequencing of Fragaria species is needed. In this study, we sequenced the complete chloroplast genome of F. × ananassa ‘Benihoppe’ using the Illumina HiSeq 2500-PE150 platform and then performed a combination of de novo assembly and reference-guided mapping of contigs to generate complete chloroplast genome sequences. The chloroplast genome exhibits a typical quadripartite structure with a pair of inverted repeats (IRs, 25,936 bp) separated by large (LSC, 85,531 bp) and small (SSC, 18,146 bp) single-copy (SC) regions. The length of the F. × ananassa ‘Benihoppe’ chloroplast genome is 155,549 bp, representing the smallest Fragaria chloroplast genome observed to date. The genome encodes 112 unique genes, comprising 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Comparative analysis of the overall nucleotide sequence identity among ten complete chloroplast genomes confirmed that for both coding and non-coding regions in Rosaceae, SC regions exhibit higher sequence variation than IRs. The Ka/Ks ratio of most genes was less than 1, suggesting that most genes are under purifying selection. Moreover, the mVISTA results also showed a high degree of conservation in genome structure, gene order and gene content in Fragaria, particularly among three octoploid strawberries which were F. × ananassa ‘Benihoppe’, F. chiloensis (GP33) and F. virginiana (O477). However, when the sequences of the coding and non-coding regions of F. × ananassa ‘Benihoppe’ were compared in detail with those of F. chiloensis (GP33) and F. virginiana (O477), a number of SNPs and InDels were revealed by MEGA 7. Six non-coding regions (trnK-matK, trnS-trnG, atpF-atpH, trnC-petN, trnT-psbD and trnP-psaJ) with a percentage of variable sites greater than 1% and no less than five parsimony-informative sites were identified and may be useful for phylogenetic analysis of the genus Fragaria
    corecore