111 research outputs found

    Determining layer number of two dimensional flakes of transition-metal dichalcogenides by the Raman intensity from substrate

    Full text link
    Transition-metal dichalcogenide (TMD) semiconductors have been widely studied due to their distinctive electronic and optical properties. The property of TMD flakes is a function of its thickness, or layer number (N). How to determine N of ultrathin TMDs materials is of primary importance for fundamental study and practical applications. Raman mode intensity from substrates has been used to identify N of intrinsic and defective multilayer graphenes up to N=100. However, such analysis is not applicable for ultrathin TMD flakes due to the lack of a unified complex refractive index (n~\tilde{n}) from monolayer to bulk TMDs. Here, we discuss the N identification of TMD flakes on the SiO2_2/Si substrate by the intensity ratio between the Si peak from 100-nm (or 89-nm) SiO2_2/Si substrates underneath TMD flakes and that from bare SiO2_2/Si substrates. We assume the real part of n~\tilde{n} of TMD flakes as that of monolayer TMD and treat the imaginary part of n~\tilde{n} as a fitting parameter to fit the experimental intensity ratio. An empirical n~\tilde{n}, namely, n~eff\tilde{n}_{eff}, of ultrathin MoS2_{2}, WS2_{2} and WSe2_{2} flakes from monolayer to multilayer is obtained for typical laser excitations (2.54 eV, 2.34 eV, or 2.09 eV). The fitted n~eff\tilde{n}_{eff} of MoS2_{2} has been used to identify N of MoS2_{2} flakes deposited on 302-nm SiO2_2/Si substrate, which agrees well with that determined from their shear and layer-breathing modes. This technique by measuring Raman intensity from the substrate can be extended to identify N of ultrathin 2D flakes with N-dependent n~\tilde{n} . For the application purpose, the intensity ratio excited by specific laser excitations has been provided for MoS2_{2}, WS2_{2} and WSe2_{2} flakes and multilayer graphene flakes deposited on Si substrates covered by 80-110 nm or 280-310 nm SiO2_2 layer.Comment: 10 pages, 4 figures. Accepted by Nanotechnolog

    Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material

    Full text link
    Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets exhibit remarkable electronic and optical properties. The 2D features, sizable bandgaps, and recent advances in the synthesis, characterization, and device fabrication of the representative MoS2_2, WS2_2, WSe2_2, and MoSe2_2 TMDs make TMDs very attractive in nanoelectronics and optoelectronics. Similar to graphite and graphene, the atoms within each layer in 2D TMDs are joined together by covalent bonds, while van der Waals interactions keep the layers together. This makes the physical and chemical properties of 2D TMDs layer dependent. In this review, we discuss the basic lattice vibrations of monolayer, multilayer, and bulk TMDs, including high-frequency optical phonons, interlayer shear and layer breathing phonons, the Raman selection rule, layer-number evolution of phonons, multiple phonon replica, and phonons at the edge of the Brillouin zone. The extensive capabilities of Raman spectroscopy in investigating the properties of TMDs are discussed, such as interlayer coupling, spin--orbit splitting, and external perturbations. The interlayer vibrational modes are used in rapid and substrate-free characterization of the layer number of multilayer TMDs and in probing interface coupling in TMD heterostructures. The success of Raman spectroscopy in investigating TMD nanosheets paves the way for experiments on other 2D crystals and related van der Waals heterostructures.Comment: 30 pages, 23 figure

    Polytypism and Unexpected Strong Interlayer Coupling of two-Dimensional Layered ReS2

    Full text link
    The anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and potential application, have one more dimension to tune the properties than the isotropic 2D materials. The interlayer vdW coupling determines the properties of 2D multi-layer materials by varying stacking orders. As an important representative anisotropic 2D materials, multilayer rhenium disulfide (ReS2) was expected to be random stacking and lack of interlayer coupling. Here, we demonstrate two stable stacking orders (aa and a-b) of N layer (NL, N>1) ReS2 from ultralow-frequency and high-frequency Raman spectroscopy, photoluminescence spectroscopy and first-principles density functional theory calculation. Two interlayer shear modes are observed in aa-stacked NL-ReS2 while only one interlayer shear mode appears in a-b-stacked NL-ReS2, suggesting anisotropic-like and isotropic-like stacking orders in aa- and a-b-stacked NL-ReS2, respectively. The frequency of the interlayer shear and breathing modes reveals unexpected strong interlayer coupling in aa- and a-b-NL-ReS2, the force constants of which are 55-90% to those of multilayer MoS2. The observation of strong interlayer coupling and polytypism in multi-layer ReS2 stimulate future studies on the structure, electronic and optical properties of other 2D anisotropic materials

    Identification and pharmacokinetics of saponins in Rhizoma Anemarrhenae after oral administration to rats by HPLC-Q-TOF/MS and HPLC-MS/MS

    Get PDF
    Rhizoma Anemarrhenae is a well-known herbal medicine with saponins as its commonly regarded major bioactive components. It is essential to classify the properties of saponins which are associated with their toxicity and efficacy. In this study, 25 compounds were identified by HPLC-Q-TOF/MS in the extract of Rhizoma Anemarrhenae and 8 saponins were detected in rat plasma by HPLC-MS/MS after oral administration of this extract. These were neomangiferin, mangiferin, timosaponin E1, timosaponin E, timosaponin B-II, timosaponin B-III, timosaponin A-III and timosaponin A-I. A sensitive and accurate HPLC-MS/MS method was developed and successfully applied to a pharmacokinetic study of the abovementioned eight saponins after oral administration of the Rhizoma Anemarrhenae extract to rats. The method validation, including specificity, linearity, precision, accuracy, recovery, matrix effect and robustness, met the requirements of the intended use. The pharmacokinetic parameter, Tmax value, ranged from 2 to 8 h for these eight saponins whereas their elimination half-life (t1/2) ranged from 4.06 to 9.77 h, indicating slow excretion. The plasma concentrations of these eight saponins were all very low, indicating a relatively low oral bioavailability. All these results provide support for further clinical studies

    A genetic diversity assessment of starch quality traits in rice landraces from the Taihu basin, China

    Get PDF
    AbstractThere are nearly 1000 rice landrace varieties in the Taihu basin, China. To assess the genetic diversity of the rice, 24 intragenic molecular markers (representing 17 starch synthesis-related genes) were investigated in 115 Taihu basin rice landraces and 87 improved cultivars simultaneously. The results show that the average genetic diversity and polymorphism information content values of the landraces were higher than those of improved cultivars. In total, 41 and 39 allele combinations (of the 17 genes) were derived from the landraces and improved cultivars, respectively; only two identical allele combinations were found between the two rice variety sources. Cluster analysis, based on the molecular markers, revealed that the rice varieties could be subdivided into five groups and, within these, the japonica improved rice and japonica landrace rice varieties were in two separate groups. According to the quality reference criteria to classify the rice into grades, some of the landraces were found to perform well, in terms of starch quality. For example, according to NY/T595-2002 criteria from the Ministry of Agriculture of China, 25 and 33 landraces reached grade 1, in terms of their apparent amylose content and gel consistency. The varieties that had outstanding quality could be used as breeding materials for rice quality breeding programs in the future. Our study is useful for future applications, such as genetic diversity studies, the protection of rice variety and improvment of rice quality in breeding programs

    Increase in neuroexcitability of unmyelinated C-type vagal ganglion neurons during initial postnatal development of visceral afferent reflex functions

    Get PDF
    BACKGROUND: Baroreflex gain increase up closely to adult level during initial postnatal weeks, and any interruption within this period will increase the risk of cardiovascular problems in later of life span. We hypothesize that this short period after birth might be critical for postnatal development of vagal ganglion neurons (VGNs). METHODS: To evaluate neuroexcitability evidenced by discharge profiles and coordinate changes, ion currents were collected from identified A- and C-type VGNs at different developmental stages using whole-cell patch clamping. RESULTS: C-type VGNs underwent significant age-dependent transition from single action potential (AP) to repetitive discharge. The coordinate changes between TTX-S and TTX-R Na(+) currents were also confirmed and well simulated by computer modeling. Although 4-AP or iberiotoxin age dependently increased firing frequency, AP duration was prolonged in an opposite fashion, which paralleled well with postnatal changes in 4-AP- and iberiotoxin-sensitive K(+) current activity, whereas less developmental changes were verified in A-types. CONCLUSION: These data demonstrate for the first time that the neuroexcitability of C-type VGNs increases significantly compared with A-types within initial postnatal weeks evidenced by AP discharge profiles and coordinate ion channel changes, which explain, at least in part, that initial postnatal weeks may be crucial for ontogenesis in visceral afferent reflex function
    corecore