33 research outputs found

    Parthenolide attenuates LPS-induced activation of NF-κB in a time-dependent manner in rat myocardium.

    Get PDF
    Parthenolide (PTN), a selective nuclear factor kappa B (NF-κB) inhibitor, has been used extensively to inhibit NF-κB activation. The duration of the inhibitory effect of PTN on NF-κB in vivo remains unclear. This study was to determine whether a lipopolysaccharide (LPS) challenge 6, 12 and 24 h after the administration of PTN could activate NF-κB. Rats were devided into five groups. The rats in the PTN, PTN+LPS and DMSO groups were injected intraperitoneally with PTN or DMSO. After 6, 12 or 24 h, LPS was administered in LPS and PTN+LPS groups. The expressions of NF-κB p50, IκBα and p-IκBα were inhibited in both PTN and PTN+LPS group at end of 6 and 12 h and no effects at 24 h. In summary, myocardial NF-κB expression occurs 1 h after the administration of LPS. PTN blocks this effect given at 6 h and no inhibitory effect 24 h after administration in vivo

    Glucagon-like peptide-2 protects the gastric mucosa via regulating blood flow and metabolites

    Get PDF
    IntroductionRefractory peptic ulcers lead to perforation and hemorrhage, which are fatal. However, these remain a therapeutic challenge. Gastric mucosal blood flow is crucial in maintaining gastric mucosal health. It’s reported that Glucagon-like peptide-2 (GLP-2), a gastrointestinal hormone, stimulated intestinal blood flow. However, the direct role of GLP-2 in gastric mucosal blood flow and metabolites remain unclear. Here, we speculated that GLP-2 might protect the gastric mucosa by increasing gastric mucosal blood flow and regulating metabolites. This study was conducted to evaluate the role of GLP-2 in gastric mucosal lesions and its underlying mechanism.MethodsWe analyzed endogenous GLP-2 during gastric mucosal injury in the serum. Rats were randomly divided into two groups, with 36 rats in each group as follows: (1) normal control group (NC1); (2) ethanol model group (EC1); rats in EC1 and NC1 groups were intragastrically administered ethanol (1 ml/200 g body weight) and distilled water (1 ml/200 g body weight). The serum was collected 10 min before intragastric administration and 15, 30, 60, 90, and 120 min after intragastric administration. Furthermore, additional male Sprague–Dawley rats were randomly divided into three groups, with six rats in each group as follows: (1) normal control group (NC); (2) ethanol model group (EC); (3) 10 μg/200 g body weight GLP-2 group (GLP-2). Rats in the NC and EC groups were intraperitoneally injected with saline. Those in the GLP-2 group were intraperitoneally injected with GLP-2. Thirty minutes later, rats in the EC and GLP-2 groups were intragastrically administered ethanol (1 ml/200 g body weight), and rats in the NC group were intragastrically administered distilled water (1 ml/200 g body weight). After the intragastric administration of ethanol for 1 h, the animals were anesthetized and gastric mucosal blood flow was measured. Serum were collected for ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) metabolomics.ResultsThere were no significant change in endogenous GLP-2 during gastric mucosal injury (P<0.05). Pretreatment with GLP-2 significantly reduced ethanol-induced gastric mucosal lesions by improving the gastric mucosal blood flow, as examined using a laser Doppler flow meter, Guth Scale, hematoxylin-eosin staining, and two-photon microscopy. UPLC-MS/MS analyses showed that GLP-2 also maintained a steady state of linoleic acid metabolism.ConclusionsTaken together, GLP-2 protects the gastric mucosa against ethanol-induced lesions by improving gastric mucosa blood flow and affecting linoleic acid metabolism

    N-Acetylcysteine and Allopurinol Synergistically Enhance Cardiac Adiponectin Content and Reduce Myocardial Reperfusion Injury in Diabetic Rats

    Get PDF
    Background: Hyperglycemia-induced oxidative stress plays a central role in the development of diabetic myocardial complications. Adiponectin (APN), an adipokine with anti-diabetic and anti-ischemic effects, is decreased in diabetes. It is unknown whether or not antioxidant treatment with N-acetylcysteine (NAC) and/or allopurinol (ALP) can attenuate APN deficiency and myocardial ischemia reperfusion (MI/R) injury in the early stage of diabetes. Methodology/Principal Findings: Control or streptozotocin (STZ)-induced diabetic rats were either untreated (C, D) or treated with NAC (1.5 g/kg/day) or ALP (100 mg/kg/day) or their combination for four weeks starting one week after STZ injection. Plasma and cardiac biochemical parameters were measured after the completion of treatment, and the rats were subjected to MI/R by occluding the left anterior descending artery for 30 min followed by 2 h reperfusion. Plasma and cardiac APN levels were decreased in diabetic rats accompanied by decreased cardiac APN receptor 2 (AdipoR2), reduced phosphorylation of Akt, signal transducer and activator of transcription 3 (STAT3) and endothelial nitric oxide synthase (eNOS) but increased IL-6 and TNF-α (all P<0.05 vs. C). NAC but not ALP increased cardiac APN concentrations and AdipoR2 expression in diabetic rats. ALP enhanced the effects of NAC in restoring cardiac AdipoR2 and phosphorylation of Akt, STAT3 and eNOS in diabetic rats. Further, NAC and ALP, respectively, decreased postischemic myocardial infarct size and creatinine kinase-MB (CK-MB) release in diabetic rats, while their combination conferred synergistic protective effects. In addition, exposure of cultured rat cardiomyocytes to high glucose resulted in significant reduction of cardiomyocyte APN concentration and AdipoR2 protein expression. APN supplementation restored high glucose induced AdipoR2 reduction in cardiomyocytes. Conclusions/Significance: NAC and ALP synergistically restore myocardial APN and AdipoR2 mediated eNOS activation. This may represent the mechanism through which NAC and ALP combination greatly reduces MI/R injury in early diabetic rats. © 2011 Wang et al.published_or_final_versio

    Tag-Ordering Polling Protocols in RFID Systems

    No full text

    An Efficient Protocol for RFID Multigroup Threshold-Based Classification Based on Sampling and Logical Bitmap

    No full text

    Spreader Classification Based on Optimal Dynamic Bit Sharing

    No full text

    Circ-USP9X interacts with EIF4A3 to promote endothelial cell pyroptosis by regulating GSDMD stability in atherosclerosis

    No full text
    Endothelial pyroptosis is a pathological mechanism of atherosclerosis (AS). Circular RNAs (circRNAs) are vital in AS progression by regulating endothelial cell functions. The study aimed to explore whether circ-USP9× regulated pyroptosis of endothelial cell to involve in AS development and the molecular mechanism. Pyroptosis was determined using lactate dehydrogenase (LDH) assay, enzyme linked immunosorbent assay (ELISA), flow cytometry, propidium iodide (PI) staining assay, and western blot. The mechanism of circ-USP9× was determined using RNA pull-down and RNA binding protein immunoprecipitation (RIP) assays. Results showed that circ-USP9× was upregulated in AS and oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). Knockdown of circ-USP9× suppressed ox-LDL induced pyroptosis of HUVECs. Mechanically, circ-USP9× could bind to EIF4A3 in the cytoplasm. Moreover, EIF4A3 was bound to GSDMD and further affects GSDMD stability. Overexpression of EIF4A3 rescued cell pyroptosis induced by circ-USP9× depletion. In short, circ-USP9× interacted with EIF4A3 to enhance GSDMD stability, thus further promoting ox-LDL-induced pyroptosis of HUVECs. These findings suggested that circ-USP9× participates in AS progression and may be a potential therapeutic target for AS

    Roof stability evaluation of large section open-off cut in lower slice of slicing mining

    No full text
    In order to study the roof stability of large-section open-off cut in lower slice of slicing mining, the 14 boreholes in the top coal of the 203 open-off cut in the lower slice of 1−2 coal seam in Huojitu Mine of Daliuta Mine is taken as the research background. The influence of the upper slice mining and the lower slice open-off cut driving on the plastic zone of the top coal of the open-off cut is analyzed by theoretical analysis, numerical simulation and field borehole peep technology. And the stability of the roof structure is evaluated by the rock mass integrity index. From the perspective of the top coal structure form, the top coal of the open-off cut is partially over-excavated or under-excavated due to the upper slicing mining. The maximum over-excavation of the open-off cut is 1.2 m, the maximum under-excavation is 0.8 m, and top-coal uneven rate is 27.7%. The result of theoretical analysis show that due to the influence of upper slice mining of the top coal of the open-off cut, the depth of plastic zone in the floor is 2.02 m. Due to the disturbance of the lower slice mining of the open-off cut, the depth of the plastic zone in the top coal is 1.50 m. Borehole peep results show that the plastic zone of the open-off cut top coal is divided into the theoretical plastic zone and the measured plastic zone according to the theoretical calculation and borehole peep respectively. Due to the influence of upper slice mining, the depth of the measured plastic zone in the floor is 1.06-2.04 m. Due to the disturbance of the lower slice mining of the open-off cut, the depth of the measured plastic zone in the top coal is 0.34-1.50 m. The measured plastic zone caused by the influence of upper slice mining on floor is 17.63% smaller than the theoretical plastic zone. The measured plastic zone of the top coal caused by the disturbance of lower slice mining of the open-off cut is 25.82% smaller than the theoretical plastic zone. The result of numerical simulation analysis shows that due to the influence of upper slice mining, the depth of plastic zone in the floor is 1-2 m. Due to the disturbance of the lower slice mining of the open-off cut, the depth of plastic zone in the top coal is 1 m. The results obtained by the above three methods are highly consistent. The stability evaluation results of the top coal in the open-off cut show that the top coal integrity index ranges from 42.9% to 87.9%. The top coal thickness is positively correlated with the integrity index and negatively correlated with the fracture development. The proportion of top coal integrity evaluation as good or above is more than 1/2, indicating that the overall structure of top coal is basically complete. The research results can provide reference for the design of top coal thickness retention standard and support scheme of large section open-off cut in lower slice of slicing mining under similar mining conditions

    Propofol Induces Apoptosis of Neurons but Not Astrocytes, Oligodendrocytes, or Neural Stem Cells in the Neonatal Mouse Hippocampus

    No full text
    It has been shown that propofol can induce widespread apoptosis in neonatal mouse brains followed by long-term cognitive dysfunction. However, selective brain area and cell vulnerability to propofol remains unknown. This study was aimed to dissect toxic effect of propofol on multiple brain cells, including neurons, astrocytes, oligodendrocytes, and neural stem cells (NSCs). Seven-day-old mice were intraperitoneally administrated propofol or intralipid as a vehicle control for 6 hours. To identify vulnerable cells undergoing apoptosis following propofol exposure, brain sagittal sections were co-stained with antibodies against an apoptosis marker along with neuron, astrocyte, oligodendrocyte, or NSC markers using immunofluorescence staining. The results showed widespread apoptosis in propofol-treated brains (apoptotic cells: 1.55 ± 0.04% and 0.06 ± 0.01% in propofol group and intralipid-treated control group, respectively). Apoptotic cell distribution exhibits region- and cell-specific patterns. Several brain regions (e.g., cerebral cortex and hippocampus) were more vulnerable to propofol than other brain regions. Most apoptotic cells in the hippocampus were located in the cornus ammonis 1 (CA1) subfield. These apoptotic cells were only detected in neurons and not astrocytes, oligodendrocytes, or NSCs. These data demonstrate that different brain regions, subfields, and different types of neuronal cells in mice exhibit various vulnerabilities to propofol. Understanding region- and cell-specific susceptibility to propofol will help to better understand cellular contribution to developmental neurotoxicity and further develop novel therapeutic targets
    corecore