635 research outputs found

    Student Recital

    Get PDF

    Template-induced structuring and tunable polymorphism of three-dimensionally ordered mesoporous (3DOm) metal oxides

    Get PDF
    Convectively assembled colloidal crystal templates, composed of size-tunable (ca. 15–50 nm) silica (SiO2) nanoparticles, enable versatile sacrificial templating of three-dimensionally ordered mesoporous (3DOm) metal oxides (MOx) at both mesoscopic and microscopic size scales. Specifically, we show for titania (TiO2) and zirconia (ZrO2) how this approach not only enables the engineering of the mesopore size, pore volume, and surface area but can also be leveraged to tune the crystallite polymorphism of the resulting 3DOm metal oxides. Template-mediated volumetric (i.e., interstitial) effects and interfacial factors are shown to preserve the metastable crystalline polymorphs of each corresponding 3DOm oxide (i.e., anatase TiO2 (A-TiO2) and tetragonal ZrO2 (t-ZrO2)) during high-temperature calcination. Mechanistic investigations suggest that this polymorph stabilization is derived from the combined effects of the template–replica (MOx/SiO2) interface and simultaneous interstitial confinement that limit the degree of coarsening during high-temperature calcination of the template–replica composite. The result is the identification of a facile yet versatile templating strategy for realizing 3DOm oxides with (i) surface areas that are more than an order of magnitude larger than untemplated control samples, (ii) pore diameters and volumes that can be tuned across a continuum of size scales, and (iii) selectable polymorphism

    Novobiocin, a Newly Found TRPV1 Inhibitor, Attenuates the Expression of TRPV1 in Rat Intestine and Intestinal Epithelial Cell Line IEC-6

    Get PDF
    Background and Purpose: Novobiocin (NOVO), an ABC transporter inhibitor, decreases intestinal wall permeability of capsaicin (CAP), an ABC transporter substrate. However, the mechanism of this effect is not consistent with the action of NOVO as an ABC transporter inhibitor. We previously found that CAP can also be transported via TRPV1, which was site-specific in the permeability of CAP across the intestine. We explored the regulation by NOVO of TRPV1 in the present study.Methods: Rats and transfected IEC-6 cells were used as the models to assess intestinal permeability and expression of TRPV1. Ussing chamber and intracellular accumulation were used to evaluate the influence of NOVO on the transport of CAP in vitro. The expression of TRPV1 was detected after administration of NOVO by qRT-PCR, western blot and immunofluorescent imaging. In addition, MTT and lactate dehydrogenase (LDH) were used to evaluate the cytotoxicity of NOVO in both rat and cell models. Finally, the effect of NOVO on the absorption of CAP in vivo was studied by LC-MS/MS.Results:In vitro data showed that there existed a dose-dependent relationship in the range of concentration between 5 and 50 μM, and even 5 μM NOVO could decrease intestinal permeability of CAP across the intestine. Meanwhile, cytosolic accumulation of CAP decreased when NOVO was used simultaneously or 24 h in advance. NOVO exhibited an inhibition level similar to that of ruthenium red (RR) or SB-705498, a TRPV1-specific inhibitor. NOVO down-regulated TRPV1 expression in the intestine and in transfected cells in a concentration-dependent fashion, hinting that its inhibition of the permeability of CAP is due to its inhibition of TRPV1 expression. Immunofluorescent imaging data showed that the fluorescence intensity of TRPV1 was reduced after pre-treatment with NOVO and SB-705498. In vivo data further demonstrated that oral co-administration of NOVO decreased Cmax and AUC of CAP in dosage-dependent ways, consistent with its role as a TRPV1 inhibitor.Conclusion: NOVO could be a potential TRPV1 inhibitor by attenuating the expression of TRPV1 and may be used to attenuate permeability of TRPV1 substrates

    Generation of Human Epidermis-Derived Mesenchymal Stem Cell-like Pluripotent Cells and their reprogramming in mouse chimeras

    Get PDF
    Stem cells can be derived from the embryo (embryonic stem cells, ESCs), from adult tissues (adult stem cells, ASCs), and by induction of fibroblasts (induced pluripotent stem cells, iPSs). Ethical problems, immunological rejection, and difficulties in obtaining human tissues limit the use of ESCs in clinical medicine. Induced pluripotent stem cells are difficult to maintain in vitro and carry a greater risk of tumor formation. Furthermore, the complexity of maintenance and propagation is especially difficult in the clinic. Adult stem cells can be isolated from several adult tissues and present the possibility of self-transplantation for the clinical treatment of a variety of human diseases. Recently, several ASCs have been successfully isolated and cultured in vitro, including hematopoietic stem cells (HSCs) , mesenchymal stem cells (MSCs), epidermis stem cells, neural stem cells (NSCs), adipose-derived stem cells (ADSCs), islet stem cells, and germ line stem cells. Human mesenchymal stem cells originate mainly from bone marrow, cord blood, and placenta, but epidermis-derived MSCs have not yet been isolated. We isolated small spindle-shaped cells with strong proliferative potential during the culture of human epidermis cells and designed a medium to isolate and propagate these cells. They resembled MSCs morphologically and demonstrated pluripotency in vivo; thus, we defined these cells as human epidermis-derived mesenchymal stem cell-like pluripotent cells (hEMSCPCs). These hEMSCPCs present a possible new cell resource for tissue engineering and regenerative medicine

    Primary prevention for risk factors of ischemic stroke with Baduanjin exercise intervention in the community elder population: study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Stroke is a major cause of death and disability in the world, and the prevalence of stroke tends to increase with age. Despite advances in acute care and secondary preventive strategies, primary prevention should play the most significant role in the reduction of the burden of stroke. As an important component of traditional Chinese Qigong, Baduanjin exercise is a simple, safe exercise, especially suitable for older adults. However, current evidence is insufficient to inform the use of Baduanjin exercise in the prevention of stroke. The aim of this trail is to systematically evaluate the prevention effect of Baduanjin exercise on ischemic stroke in the community elder population with high risk factors. METHODS: A total of 170 eligible participants from the community elder population will be randomly allocated into the Baduanjin exercise group and usual physical activity control group in a 1:1 ratio. Besides usual physical activity, participants in the Baduanjin exercise group will accept a 12-week Baduanjin exercise training with a frequency of five days a week and 40 minutes a day. Primary and secondary outcomes will be measured at baseline, 13 weeks (at end of intervention) and 25 weeks (after additional 12-week follow-up period). DISCUSSION: This study will be the randomized trial to evaluate the effectiveness of Baduanjin exercise for primary prevention of stroke in community elder population with high risk factors of stroke. The results of this trial will help to establish the optimal approach for primary prevention of stroke. TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR-TRC-13003588. Registration date: 24 July, 2013
    corecore