29 research outputs found

    Bed level changes in the surf zone during post-storm beach recovery

    Get PDF
    The study of post-storm beach recovery is important for economic development and the protection of life in coastal areas. In this study, field observations were conducted for 21 days in the surf zone of Dongdao Beach, Hailing Island, China, after tropical storm “Cempaka”. Data on depth, wave, Eulerian velocity, sediment, three-dimensional topography of the beach, and high-frequency variations in bed-level elevation were collected. The results showed that the beach experienced medium- to low- to medium-energy waves during field observations and covered two complete astronomical tide cycles. Contrary to the effect of wave energy conditions on beaches under normal wave conditions, a higher wave energy during beach recovery can promote silting and accelerate beach recovery. Tidal water level is an important factor affecting beach restoration, and a smaller tidal range is conducive to beach accretion. In a mixed semidiurnal tide, beach erosion and accretion occurred in the “highest tide” and “sub-highest tide” tidal cycles, respectively, and the combined effect of the two affected the change in the bed level in a mixed semidiurnal tide. After the storm, the hydrodynamic forcing mechanism and self-organization process of the sand bar jointly drove the formation of the topography of the bar channel in the surf zone. After the storm stopped, the spectral energy in free surface elevation was mainly distributed in the very low frequency and decayed rapidly at the infragravity band. The very low-frequency pulsation of the surf zone during recovery is a prominent feature of bed-level elevation, depth, and velocity. This study provides a good case for the study of hydrodynamic and bed level changes in the post-storm surf zone, as well as a reference for future studies of the intrinsic mechanisms post-storm beach recovery processes around the world

    Vegetative Ecological Characteristics of Restored Reed (Phragmites australis) Wetlands in the Yellow River Delta, China

    Get PDF
    In this study, we compared ecological characteristics of wetland vegetation in a series of restoration projects that were carried out in the wetlands of Yellow River Delta. The investigated characteristics include plant composition structure, species diversity and community similarity in three kinds of Phragmites australis wetlands, i.e. restored P. australis wetlands (R1, R2, R3 and R4: restored in 2002, 2005, 2007 and 2009, respectively), natural P. australis wetland (N) and degraded P. australis wetland (D) to assess the process of wetlands restoration. The coverage of the R1 was 99%, which was similar to natural wetland. Among all studied wetlands, the highest and lowest stem density was observed in R1 and R2, respectively, Plant height and stem diameter show the same trend as N > R2 > R1 > R3 > D > R4. Species diversity of restored P. australis wetlands became closed to natural wetland. Both species richness and Shannon–Wiener index had similar tendency: increased first and then decreased with restored time. The highest species richness and species diversity were observed in R2, while the lowest values of those parameters were found in natural P. australis wetland. Similarity indexes between restored wetlands and natural wetland increased with the restoration time, but they were still less than 50%. The results indicate that the vegetation of P. australis wetlands has experienced a great improvement after several years’ restoration, and it is feasible to restored degraded P. australis wetlands by pouring fresh water into those wetlands in the Yellow River Delta. However, it is notable that costal degraded P. australis wetland in this region may take years to decades to reach the status of natural wetland

    Sodium ions storage performance of PSS-rGO composites

    No full text
    The functionalized graphene, with prominent capability over expansion of interlayer spacing and enhancement of sodium ion diffusivity, has gained paramount interests in fabricating anode of sodium ion batteries(SIBs). Here, a poly(sodium 4-vinylbenzenesulfonate)graphene composite(PSS-rGO) was synthesized via an in situ insertion process. The insertion structure is based on the π-π interaction between the electron of graphene and the electron of PSS, which expands the interlayer spacing of rGO and, more importantly, stabilizes the structure of the composites, restrains the stack of graphene. Beyond that, the introduced sodium sulfonate groups are capable of increasing the diffusion rate of sodium ions for fast sodium ion adsorption, ensuring superior cycling performance. The performances of the simples were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), Raman spectrometer(Raman), X-ray photoelectron spectrometer(XPS), electrochemical workstation and battery detection system. The results show the PSS-rGO remains a reversible capacity of 256 mAh·g-1 at 5 A·g-1 after 6000 cycles, with an ultralow decay rate of 0.003%. This work provides a feasible avenue for exploring advanced organic-inorganic hybrid materials with high capacity, fast sodium storage and ultralong lifespan for SIBs

    Resveratrol rescues cutaneous radiation-induced DNA damage via a novel AMPK/SIRT7/HMGB1 regulatory axis

    No full text
    Abstract Cutaneous radiation injury (CRI) interrupts the scheduled process of radiotherapy and even compromises the life quality of patients. However, the current clinical options for alleviating CRI are relatively limited. Resveratrol (RSV) has been shown to be a promising protective agent against CRI; yet the mechanisms of RSV enhancing radioresistance were not fully elucidated and limited its clinical application. In this study, we demonstrate RSV promotes cutaneous radioresistance mainly through SIRT7. During ionizing radiation (IR) treatment, RSV indirectly phosphorylates and activates SIRT7 through AMPK, which is critical for maintaining the genome stability of keratinocytes. Immunoprecipitation and mass spectrometry identified HMGB1 to be the key interacting partner of SIRT7 to mediate the radioprotective function of RSV. Mechanistic study elucidated that SIRT7 interacts with and deacetylates HMGB1 to redistribute it into nucleus and “switch on” its function for DNA damage repair. Our findings establish a novel AMPK/SIRT7/HMGB1 regulatory axis that mediates the radioprotective function of RSV to alleviate IR-induced cutaneous DNA injury, providing an efficiently-curative option for patients with CRI during radiotherapy

    The effects of casein kinase 2 interacting protein-1 on the growth and development of craniomaxillofacial soft and hard tissues in mice

    No full text
    Objective To investigate the effect of casein kinase 2 interacting protein-1 (CKIP-1) on craniofacial soft tissues and hard tissues, to provide the basis for the study and treatment of craniomaxillofacial related diseases. Methods 6-month- old male CKIP-1 knockout (KO) mice were selected as the experimental group, and wild-type (WT) mice were selected as the control group. The craniomaxillofacial hard tissues (parietal bone, nasal bone, incisors and molars) were analyzed through micro- CT, and the morphological changes of maxillofacial soft tissues (nasal cartilage, lip mucosa and tongue) were analyzed through HE staining and toluidine blue staining. Results CKIP-1 negatively regulated bone mass of cancellous bone of cranial and maxillofacial bones and dentin mineralization. Compared with the WT mice, the thickness of the parietal baffle layer increased by 93% in KO mice, while cortical bone showed no significant difference between the two groups. The nasal cancellous bone thickness increased by 160% in KO-mice, while cortical bone showed no significant difference between the two groups; the enamel thickness was normal, but the pulp cavity became smaller and the dentin thickness increased by 48%. Compared with the WT mice, the HE staining and toluidine blue staining analyses of the soft tissues revealed that the thickness of the alar cartilage plate of KO mice increased by 57%, and local ossification was found within the cartilage plate. The thickness of the keratinized layer of the labial mucosa increased by 170% in KO mice and the muscle fiber diameter of the lingual muscle increased by 45%. Conclusion CKIP-1 genes have different effects on the growth and development of various soft and hard tissues in the maxillofacial region of mice

    Statistical study on the characterization of phase and amplitude scintillation events in the high-latitude region during 2014-2020 based on ISMR

    No full text
    A better understanding of the climatology of the ionospheric scintillation in the high-latitude region is beneficial to model the adverse effect of the ionospheric scintillation on the positioning navigation and timing services of Global Navigation Satellite System (GNSS). This paper conducts a statistical study on the characterization of the phase and amplitude scintillation events in the high-latitude region based on scintillation indices provided by ionospheric scintillation monitoring receivers (ISMR) collected during the years of 2014 to 2020. Results of this paper show that phase scintillation dominates in most of the high-latitude regions. The proportion of the phase scintillation with strong magnitude in the middle-high latitude region is greater than that in the high and middle latitude regions, but the duration of the scintillation in the middle-high latitude region is generally shorter, with an average value of about 8 minutes. The ionospheric scintillation presents seasonal and diurnal dependency due to the effect of the solar radiation and earth orientation. The relationships between the occurrence of ionospheric scintillation and the space weather parameters, Ap and IMF, are also studied, showing that Ap can reflect the intensity of the ionospheric scintillation in the middle-high latitude region, and the ionospheric scintillation occurs more frequently under the condition of the northward IMF

    Additional file 1 of MCCC2 is a novel mediator between mitochondria and telomere and functions as an oncogene in colorectal cancer

    No full text
    Additional file 1. Fig. S1. MCCC2 promoted cell proliferation, invasion, and migration in vitro. A The MCCC2 expression level in human CRC cell line based on Expression Altas database from EMBL-EBL website. B The relative mRNA expression level of MCCC2 in human 8 CRC cell lines analyzed by qRT-PCR. C Proliferation assay using IncuCyte in both transient MCCC2 overexpression by cell transfection of MCCC2-FLAG plasmids and transient siRNA MCCC2 in DLD1 cells showed that MCCC2 selective expression could affect cell proliferation in DLD1 cells. Two‐way ANOVA was used to calculate p value. DRepresentative images and quantification of colony formation assay in both transient MCCC2 overexpression by cell transfection of MCCC2-FLAG plasmids and transient siRNA MCCC2 in DLD1 cells showed that MCCC2 selective expression could affect cell proliferation ability (n = 3). A paired two-tailed Student’s t-test was used to calculate p values. E Representative images and quantification of wound healing in both transient MCCC2 overexpression by cell transfection of MCCC2-FLAG plasmids and transient siRNA MCCC2 in DLD1 cells showed that MCCC2 selective expression could affect cell migration ability (n = 3). A paired two-tailed Student’s t-test was used to calculate p value. F Representative images and quantification of Transwell assay in both transient MCCC2 overexpression by cell transfection of MCCC2-FLAG plasmids and transient siRNA MCCC2 in DLD1 cells showed that MCCC2 selective expression could affect the invasion ability (n = 3). A paired two-tailed Student’s t-test was used to calculate p value. (All data are represented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
    corecore