4 research outputs found

    General Charge Transfer Dipole Model for AMOEBA-Like Force Fields

    No full text
    The development of highly accurate force fields is always an importance aspect in molecular modeling. In this work, we introduce a general damping-based charge transfer dipole (D-CTD) model to describe the charge transfer energy and the corresponding charge flow for H, C, N, O, P, S, F, Cl, and Br elements in common bio-organic systems. Then, two effective schemes to evaluate the charge flow from the corresponding induced dipole moment between the interacting molecules were also proposed and discussed. The potential applicability of the D-CTD model in ion-containing systems was also demonstrated in a series of ion–water complexes including Li+, Na+, K+, Mg2+, Ca2+, Fe2+, Zn2+, Pt2+, F–, Cl–, Br–, and I– ions. In general, the D-CTD model demonstrated good accuracy and good transferability in both charge transfer energy and the corresponding charge flow for a wide range of model systems. By distinguishing the intermolecular charge redistribution (charge transfer) under the influence of an external electric field from the accompanying intramolecular charge redistribution (polarization), the D-CTD model is theoretically consistent with current induced dipole-based polarizable dipole models and hence can be easily implemented and parameterized. Along with our previous work in charge penetration-corrected electrostatics, a bottom-up approach constructed water model was also proposed and demonstrated. The structure-maker and structure-breaker roles of cations and anions were also correctly reproduced using Na+, K+, Cl–, and I– ions in the new water model, respectively. This work demonstrates a cost-effective approach to describe the charge transfer phenomena. The water and ion models also show the feasibility of a modulated development approach for future force fields

    Capturing Many-Body Interactions with Classical Dipole Induction Models

    No full text
    The nonadditive many-body interactions are significant for structural and thermodynamic properties of condensed phase systems. In this work we examined the many-body interaction energy of a large number of common organic/biochemical molecular clusters, which consist of 18 chemical species and cover nine common organic elements, using the Møller–Plesset perturbation theory to the second order (MP2) [Møller et al. Phys. Rev. 1934, 46, 618.]. We evaluated the capability of Thole-based dipole induction models to capture the many-body interaction energy. Three models were compared: the original model and parameters used by the AMOEBA force field, a variation of this original model where the damping parameters have been reoptimized to MP2 data, and a third model where the damping function form applied to the permanent electric field is modified. Overall, we find the simple classical atomic dipole models are able to capture the 3- and 4-body interaction energy across a wide variety of organic molecules in various intermolecular configurations. With modified Thole models, it is possible to further improve the agreement with MP2 results. These models were also tested on systems containing metal/halogen ions to examine the accuracy and transferability. This work suggests that the form of damping function applied to the permanent electrostatic field strongly affects the distance dependence of polarization energy at short intermolecular separations

    General Charge Transfer Dipole Model for AMOEBA-Like Force Fields

    No full text
    The development of highly accurate force fields is always an importance aspect in molecular modeling. In this work, we introduce a general damping-based charge transfer dipole (D-CTD) model to describe the charge transfer energy and the corresponding charge flow for H, C, N, O, P, S, F, Cl, and Br elements in common bio-organic systems. Then, two effective schemes to evaluate the charge flow from the corresponding induced dipole moment between the interacting molecules were also proposed and discussed. The potential applicability of the D-CTD model in ion-containing systems was also demonstrated in a series of ion–water complexes including Li+, Na+, K+, Mg2+, Ca2+, Fe2+, Zn2+, Pt2+, F–, Cl–, Br–, and I– ions. In general, the D-CTD model demonstrated good accuracy and good transferability in both charge transfer energy and the corresponding charge flow for a wide range of model systems. By distinguishing the intermolecular charge redistribution (charge transfer) under the influence of an external electric field from the accompanying intramolecular charge redistribution (polarization), the D-CTD model is theoretically consistent with current induced dipole-based polarizable dipole models and hence can be easily implemented and parameterized. Along with our previous work in charge penetration-corrected electrostatics, a bottom-up approach constructed water model was also proposed and demonstrated. The structure-maker and structure-breaker roles of cations and anions were also correctly reproduced using Na+, K+, Cl–, and I– ions in the new water model, respectively. This work demonstrates a cost-effective approach to describe the charge transfer phenomena. The water and ion models also show the feasibility of a modulated development approach for future force fields

    Polarizable Multipole-Based Force Field for Dimethyl and Trimethyl Phosphate

    No full text
    Phosphate groups are commonly observed in biomolecules such as nucleic acids and lipids. Due to their highly charged and polarizable nature, modeling these compounds with classical force fields is challenging. Using quantum mechanical studies and liquid-phase simulations, the AMOEBA force field for dimethyl phosphate (DMP) ion and trimethyl phosphate (TMP) has been developed. On the basis of <i>ab initio</i> calculations, it was found that ion binding and the solution environment significantly impact both the molecular geometry and the energy differences between conformations. Atomic multipole moments are derived from MP2/cc-pVQZ calculations of methyl phosphates at several conformations with their chemical environments taken into account. Many-body polarization is handled via a Thole-style induction model using distributed atomic polarizabilities. van der Waals parameters of phosphate and oxygen atoms are determined by fitting to the quantum mechanical interaction energy curves for water with DMP or TMP. Additional stretch-torsion and angle-torsion coupling terms were introduced in order to capture asymmetry in P–O bond lengths and angles due to the generalized anomeric effect. The resulting force field for DMP and TMP is able to accurately describe both the molecular structure and conformational energy surface, including bond and angle variations with conformation, as well as interaction of both species with water and metal ions. The force field was further validated for TMP in the condensed phase by computing hydration free energy, liquid density, and heat of vaporization. The polarization behavior between liquid TMP and TMP in water is drastically different
    corecore