4 research outputs found

    Effect of Graphene Oxide on the Mechanical Properties and Durability of High-Strength Lightweight Concrete Containing Shale Ceramsite

    No full text
    An effective pathway to achieve the sustainable development of resources and environmental protection is to utilize shale ceramsite (SC), which is processed from shale spoil to produce high-strength lightweight concrete (HSLWC). Furthermore, the urgent demand for better performance of HSLWC has stimulated active research on graphene oxide (GO) in strengthening mechanical properties and durability. This study was an effort to investigate the effect of different contents of GO on HSLWC manufactured from SC. For this purpose, six mixtures containing GO in the range of 0–0.08% (by weight of cement) were systematically designed to test the mechanical properties (compressive strength, flexural strength, and splitting tensile strength), durability (chloride penetration resistance, freezing–thawing resistance, and sulfate attack resistance), and microstructure. The experimental results showed that the optimum amount of 0.05% GO can maximize the compressive strength, flexural strength, and splitting tensile strength by 20.1%, 34.3%, and 24.2%, respectively, and exhibited excellent chloride penetration resistance, freezing–thawing resistance, and sulfate attack resistance. Note that when the addition of GO was relatively high, the performance improvement in HSLWC as attenuated instead. Therefore, based on the comprehensive analysis of microstructure, the optimal addition level of GO to achieve the best mechanical properties and durability of HSLWC is considered to be 0.05%. These findings can provide a new method for the use of SC in engineering

    Undergraduate student experience in development of ZVS power converter for voltage control with low cost microcontroller

    No full text
    This paper presents an integration of a low cost microcontroller with a power converter for controlling the output voltage. Here, it will benefit the UTHM final year student in order to apply what have been taught during Power Electronics subject in Year 3. The power converter that has been developed is the zero voltage switching (ZVS) with inverter voltage control mechanism. As for the microcontroller application, the Raspberry Pi has been used. A test on open loop and closed loop conditions have been applied using Proportional Integral (PI) control for controlling the Pulse Width Modulation (PWM) signal pattern for inverter output in hardware experiment test. The PI controller is developed and simulated using the MATLAB/Simulink software and then downloaded to the Arduino and Raspberry Pi microcontroller boards for testing purposes. At the end of the project, the students are able to understand more especially on integrating the control mechanism to the microcontroller device using a power converter in order to achieve the control target output

    Prediction Model and Mechanism for Drying Shrinkage of High-Strength Lightweight Concrete with Graphene Oxide

    No full text
    The excellent performance of graphene oxide (GO) in terms of mechanical properties and durability has stimulated its application potential in high-strength lightweight concrete (HSLWC). However, more attention needs to be paid to the long-term drying shrinkage of HSLWC. This work aims to investigate the compressive strength and drying shrinkage behavior of HSLWC incorporating low GO content (0.00–0.05%), focusing on the prediction and mechanism of drying shrinkage. Results indicate the following: (1) GO can acceptably reduce slump and significantly increase specific strength by 18.6%. (2) Drying shrinkage increased by 8.6% with the addition of GO. A modified ACI209 model with a GO content factor was demonstrated to have high accuracy based on the comparison of typical prediction models. (3) GO not only refines the pores but also forms flower-like crystals, which results in the increased drying shrinkage of HSLWC. These findings provide support for the prevention of cracking in HSLWC
    corecore