256 research outputs found

    Meta-Stock: Task-Difficulty-Adaptive Meta-learning for Sub-new Stock Price Prediction

    Full text link
    Sub-new stock price prediction, forecasting the price trends of stocks listed less than one year, is crucial for effective quantitative trading. While deep learning methods have demonstrated effectiveness in predicting old stock prices, they require large training datasets unavailable for sub-new stocks. In this paper, we propose Meta-Stock: a task-difficulty-adaptive meta-learning approach for sub-new stock price prediction. Leveraging prediction tasks formulated by old stocks, our meta-learning method aims to acquire the fast generalization ability that can be further adapted to sub-new stock price prediction tasks, thereby solving the data scarcity of sub-new stocks. Moreover, we enhance the meta-learning process by incorporating an adaptive learning strategy sensitive to varying task difficulties. Through wavelet transform, we extract high-frequency coefficients to manifest stock price volatility. This allows the meta-learning model to assign gradient weights based on volatility-quantified task difficulty. Extensive experiments on datasets collected from three stock markets spanning twenty-two years prove that our Meta-Stock significantly outperforms previous methods and manifests strong applicability in real-world stock trading. Besides, we evaluate the reasonability of the task difficulty quantification and the effectiveness of the adaptive learning strategy

    MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

    Full text link
    In this paper, we aim to create generalizable and controllable neural signed distance fields (SDFs) that represent clothed humans from monocular depth observations. Recent advances in deep learning, especially neural implicit representations, have enabled human shape reconstruction and controllable avatar generation from different sensor inputs. However, to generate realistic cloth deformations from novel input poses, watertight meshes or dense full-body scans are usually needed as inputs. Furthermore, due to the difficulty of effectively modeling pose-dependent cloth deformations for diverse body shapes and cloth types, existing approaches resort to per-subject/cloth-type optimization from scratch, which is computationally expensive. In contrast, we propose an approach that can quickly generate realistic clothed human avatars, represented as controllable neural SDFs, given only monocular depth images. We achieve this by using meta-learning to learn an initialization of a hypernetwork that predicts the parameters of neural SDFs. The hypernetwork is conditioned on human poses and represents a clothed neural avatar that deforms non-rigidly according to the input poses. Meanwhile, it is meta-learned to effectively incorporate priors of diverse body shapes and cloth types and thus can be much faster to fine-tune, compared to models trained from scratch. We qualitatively and quantitatively show that our approach outperforms state-of-the-art approaches that require complete meshes as inputs while our approach requires only depth frames as inputs and runs orders of magnitudes faster. Furthermore, we demonstrate that our meta-learned hypernetwork is very robust, being the first to generate avatars with realistic dynamic cloth deformations given as few as 8 monocular depth frames.Comment: 17 pages, 9 figures. Project page: https://neuralbodies.github.io/metavatar

    Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation From Multimodal Unpaired Images

    Full text link
    In medical applications, the same anatomical structures may be observed in multiple modalities despite the different image characteristics. Currently, most deep models for multimodal segmentation rely on paired registered images. However, multimodal paired registered images are difficult to obtain in many cases. Therefore, developing a model that can segment the target objects from different modalities with unpaired images is significant for many clinical applications. In this work, we propose a novel two-stream translation and segmentation unified attentional generative adversarial network (UAGAN), which can perform any-to-any image modality translation and segment the target objects simultaneously in the case where two or more modalities are available. The translation stream is used to capture modality-invariant features of the target anatomical structures. In addition, to focus on segmentation-related features, we add attentional blocks to extract valuable features from the translation stream. Experiments on three-modality brain tumor segmentation indicate that UAGAN outperforms the existing methods in most cases.Comment: 9 pages, 4 figures, Accepted by MICCAI201

    Balancing the Causal Effects in Class-Incremental Learning

    Full text link
    Class-Incremental Learning (CIL) is a practical and challenging problem for achieving general artificial intelligence. Recently, Pre-Trained Models (PTMs) have led to breakthroughs in both visual and natural language processing tasks. Despite recent studies showing PTMs' potential ability to learn sequentially, a plethora of work indicates the necessity of alleviating the catastrophic forgetting of PTMs. Through a pilot study and a causal analysis of CIL, we reveal that the crux lies in the imbalanced causal effects between new and old data. Specifically, the new data encourage models to adapt to new classes while hindering the adaptation of old classes. Similarly, the old data encourages models to adapt to old classes while hindering the adaptation of new classes. In other words, the adaptation process between new and old classes conflicts from the causal perspective. To alleviate this problem, we propose Balancing the Causal Effects (BaCE) in CIL. Concretely, BaCE proposes two objectives for building causal paths from both new and old data to the prediction of new and classes, respectively. In this way, the model is encouraged to adapt to all classes with causal effects from both new and old data and thus alleviates the causal imbalance problem. We conduct extensive experiments on continual image classification, continual text classification, and continual named entity recognition. Empirical results show that BaCE outperforms a series of CIL methods on different tasks and settings

    InterroLang: Exploring NLP Models and Datasets through Dialogue-based Explanations

    Full text link
    While recently developed NLP explainability methods let us open the black box in various ways (Madsen et al., 2022), a missing ingredient in this endeavor is an interactive tool offering a conversational interface. Such a dialogue system can help users explore datasets and models with explanations in a contextualized manner, e.g. via clarification or follow-up questions, and through a natural language interface. We adapt the conversational explanation framework TalkToModel (Slack et al., 2022) to the NLP domain, add new NLP-specific operations such as free-text rationalization, and illustrate its generalizability on three NLP tasks (dialogue act classification, question answering, hate speech detection). To recognize user queries for explanations, we evaluate fine-tuned and few-shot prompting models and implement a novel Adapter-based approach. We then conduct two user studies on (1) the perceived correctness and helpfulness of the dialogues, and (2) the simulatability, i.e. how objectively helpful dialogical explanations are for humans in figuring out the model's predicted label when it's not shown. We found rationalization and feature attribution were helpful in explaining the model behavior. Moreover, users could more reliably predict the model outcome based on an explanation dialogue rather than one-off explanations.Comment: EMNLP 2023 Findings. Camera-ready versio

    Full-sky ray-tracing simulation of weak lensing using ELUCID simulations: exploring galaxy intrinsic alignment and cosmic shear correlations

    Full text link
    The intrinsic alignment of galaxies is an important systematic effect in weak-lensing surveys, which can affect the derived cosmological parameters. One direct way to distinguish different alignment models and quantify their effects on the measurement is to produce mocked weak-lensing surveys. In this work, we use full-sky ray-tracing technique to produce mock images of galaxies from the ELUCID NN-body simulation run with the WMAP9 cosmology. In our model we assume that the shape of central elliptical galaxy follows that of the dark matter halo, and spiral galaxy follows the halo spin. Using the mocked galaxy images, a combination of galaxy intrinsic shape and the gravitational shear, we compare the predicted tomographic shear correlations to the results of KiDS and DLS. It is found that our predictions stay between the KiDS and DLS results. We rule out a model in which the satellite galaxies are radially aligned with the center galaxy, otherwise the shear-correlations on small scales are too high. Most important, we find that although the intrinsic alignment of spiral galaxies is very weak, they induce a positive correlation between the gravitational shear signal and the intrinsic galaxy orientation (GI). This is because the spiral galaxy is tangentially aligned with the nearby large-scale overdensity, contrary to the radial alignment of elliptical galaxy. Our results explain the origin of detected positive GI term from the weak-lensing surveys. We conclude that in future analysis, the GI model must include the dependence on galaxy types in more detail.Comment: 23 pages, 13 figures, published in ApJ. Our mock galaxy catalog is available upon request by email to the author ([email protected], [email protected]
    • …
    corecore