47 research outputs found

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    ABCG1 Attenuates Oxidative Stress Induced by H2O2 through the Inhibition of NADPH Oxidase and the Upregulation of Nrf2-Mediated Antioxidant Defense in Endothelial Cells

    No full text
    Summary. Oxidative stress is an important factor that is related to endothelial dysfunction. ATP-binding cassette transporter G1 (ABCG1), a regulator of intracellular cholesterol efflux, has been found to prevent endothelial activation in vessel walls. To explore the role of ABCG1 in oxidative stress production in endothelial cells, HUAECs were exposed to H2O2 and transfected with the specific ABCG1 siRNA or ABCG1 overexpression plasmid. The results showed that overexpression of ABCG1 by ABCG1 plasmid or liver X receptor (LXR) agonist T0901317 treatment inhibited ROS production and MDA content induced by H2O2 in HUAECs. Furthermore, ABCG1 upregulation blunted the activity of prooxidant NADPH oxidase and the expression of Nox4, one of the NADPH oxidase subunits. Moreover, the increased migration of Nrf2 from the cytoplasm to the nucleus and antioxidant HO-1 expression were detected in HUAECs with upregulation of ABCG1. Conversely, ABCG1 downregulation by ABCG1 siRNA increased NADPH oxidase activity and Nox4 expression and abrogated the increase at Nrf2 nuclear protein levels. In addition, intracellular cholesterol load interfered with the balance between NADPH oxidase activity and HO-1 expression. It was suggested that ABCG1 attenuated oxidative stress induced by H2O2 in endothelial cells, which might be involved in the balance between decreased NADPH oxidase activity and increased Nrf2/OH-1 antioxidant defense signaling via its regulation for intracellular cholesterol accumulation

    Construction and validation of a cuproptosis-related diagnostic gene signature for atrial fibrillation based on ensemble learning

    No full text
    Abstract Background Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. Nonetheless, the accurate diagnosis of this condition continues to pose a challenge when relying on conventional diagnostic techniques. Cell death is a key factor in the pathogenesis of AF. Existing investigations suggest that cuproptosis may also contribute to AF. This investigation aimed to identify a novel diagnostic gene signature associated with cuproptosis for AF using ensemble learning methods and discover the connection between AF and cuproptosis. Results Two genes connected to cuproptosis, including solute carrier family 31 member 1 (SLC31A1) and lipoic acid synthetase (LIAS), were selected by integration of random forests and eXtreme Gradient Boosting algorithms. Subsequently, a diagnostic model was constructed that includes the two genes for AF using the Light Gradient Boosting Machine (LightGBM) algorithm with good performance (the area under the curve value > 0.75). The microRNA-transcription factor-messenger RNA network revealed that homeobox A9 (HOXA9) and Tet methylcytosine dioxygenase 1 (TET1) could target SLC31A1 and LIAS in AF. Functional enrichment analysis indicated that cuproptosis might be connected to immunocyte activities. Immunocyte infiltration analysis using the CIBERSORT algorithm suggested a greater level of neutrophils in the AF group. According to the outcomes of Spearman’s rank correlation analysis, there was a negative relation between SLC31A1 and resting dendritic cells and eosinophils. The study found a positive relationship between LIAS and eosinophils along with resting memory CD4+ T cells. Conversely, a negative correlation was detected between LIAS and CD8+ T cells and regulatory T cells. Conclusions This study successfully constructed a cuproptosis-related diagnostic model for AF based on the LightGBM algorithm and validated its diagnostic efficacy. Cuproptosis may be regulated by HOXA9 and TET1 in AF. Cuproptosis might interact with infiltrating immunocytes in AF

    Activation of Peripheral Blood CD3+ T-lymphocytes in Patients With Atrial Fibrillation

    No full text

    Effects of aerobic exercise on cardiomyocyte cross sectional area and fibrosis induced by TAC.

    No full text
    <p>(<b>a</b>) Representative Masson’s trichrome staining revealed left ventricular fibrosis 9 weeks after exercise training. Red indicates viable myocardium; blue indicates fibrosis. Scale bar represents 20 μm. (<b>b</b>) Representative WGA staining revealed cardiomyocyte cross sectional area. Green fluorescence delineate cardiomyocyte membranes (<b>c</b>) Quantitative analysis of cardiomyocyte cross sectional area (n = 100 per group. *P<0.05 vs. SHAM and TAC+E. <sup>†</sup>P<0.05 vs. SHAM). (<b>d</b>) Quantitative analysis of the fibrotic area (n = 20 per group.*P<0.05 vs. SHAM and TAC+E. <sup>†</sup>P<0.05 vs. SHAM).</p

    Effect of aerobic exercise on cardiac hypertrophy after TAC.

    No full text
    <p>(<b>a</b>) Representative heart weight to body weight ratio 10 weeks after TAC. (n = 12 per group. *P<0.05 vs. SHAM and TAC+E. †P<0.05 vs. SHAM). Quantification of calculated left ventricular mass (LVM) (<b>b</b>), left ventricular end systolic posterior wall (LVPWS) (<b>c</b>), and interventricular septum end systolic thickness (IVSS) (<b>d</b>) 10 weeks after TAC. (<b>b</b>) (<b>c</b>) (<b>d</b>) (n = 12 per group. *P<0.05 vs. SHAM. <sup>#</sup>P<0.05 vs. TAC and SHAM).</p

    Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation

    No full text
    <div><p>Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson’s trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR59230A. Our study suggested that aerobic exercise training could improve cardiac systolic function and alleviate LV chamber dilation, cardiac fibrosis and hypertrophy in HF mice. The mechanism responsible for the protective effects of aerobic exercise is associated with the activation of the β3-AR-nNOS-NO pathway.</p></div
    corecore