3,276 research outputs found

    Investigating the spectroscopy behavior of undetected 1F1F-wave charmed baryons

    Full text link
    In this work, we investigate the spectroscopic properties of 1F1F-wave charmed baryons, which have not yet been observed in experiments. We employ a non-relativistic potential model and utilize the Gaussian expansion method to obtain the mass spectra of these charmed baryons. Additionally, we focus on the two-body Okubo-Zweig-Iizuka allowed strong decay behaviors, which plays a crucial role in characterizing the properties of these baryons. Our comprehensive analyses of the mass spectra and two-body Okubo-Zweig-Iizuka allowed decay behaviors provides valuable insights for future experimental investigations. This study significantly contributes to our understandings of the spectroscopic properties of 1F1F-wave charmed baryons.Comment: 10 pages, 2 figures, 9 tables. More references added. Accepted by Phys. Rev.

    The newly observed Ωc(3327)\Omega_c(3327): A good candidate for a DD-wave charmed baryon

    Full text link
    The newly observed Ωc(3327)\Omega_c(3327) gives us a good chance to construct the Ωc\Omega_c charmed baryon family. In this work, we carry out the mass spectrum analysis by a non-relativistic potential model using Gaussian Expansion Method, and the study of its two-body Okubo-Zweig-Iizuka allowed strong decay behavior. Our results imply that the Ωc(3327)\Omega_c(3327) is good candidate of Ωc(1D)\Omega_c(1D) state with JP=5/2+J^P=5/2^+. We also predict the spectroscopy behavior of other Ωc(1D)\Omega_c(1D) states, which may provide further clues to their search.Comment: 6 pages, 4 tables, 3 figures. Accepted by PR

    A new scoring function for top-down spectral deconvolution

    Get PDF
    BACKGROUND: Top-down mass spectrometry plays an important role in intact protein identification and characterization. Top-down mass spectra are more complex than bottom-up mass spectra because they often contain many isotopomer envelopes from highly charged ions, which may overlap with one another. As a result, spectral deconvolution, which converts a complex top-down mass spectrum into a monoisotopic mass list, is a key step in top-down spectral interpretation. RESULTS: In this paper, we propose a new scoring function, L-score, for evaluating isotopomer envelopes. By combining L-score with MS-Deconv, a new software tool, MS-Deconv+, was developed for top-down spectral deconvolution. Experimental results showed that MS-Deconv+ outperformed existing software tools in top-down spectral deconvolution. CONCLUSIONS: L-score shows high discriminative ability in identification of isotopomer envelopes. Using L-score, MS-Deconv+ reports many correct monoisotopic masses missed by other software tools, which are valuable for proteoform identification and characterization

    Charged lepton flavor violating Higgs decays at future e+e−e^+e^- colliders

    Full text link
    After the discovery of the Higgs boson, several future experiments have been proposed to study the Higgs boson properties, including two circular lepton colliders, the CEPC and the FCC-ee, and one linear lepton collider, the ILC. We evaluate the precision reach of these colliders in measuring the branching ratios of the charged lepton flavor violating Higgs decays H→e±μ∓H\to e^\pm\mu^\mp, e±τ∓e^\pm\tau^\mp and μ±τ∓\mu^\pm\tau^\mp. The expected upper bounds on the branching ratios given by the circular (linear) colliders are found to be B(H→e±μ∓)<1.2 (2.1)×10−5\mathcal{B}(H\to e^\pm\mu^\mp) < 1.2\ (2.1) \times 10^{-5}, B(H→e±τ∓)<1.6 (2.4)×10−4\mathcal{B}(H\to e^\pm\tau^\mp) < 1.6\ (2.4) \times 10^{-4} and B(H→μ±τ∓)<1.4 (2.3)×10−4\mathcal{B}(H\to \mu^\pm\tau^\mp) < 1.4\ (2.3) \times 10^{-4} at 95\% CL, which are improved by one to two orders compared to the current experimental bounds. We also discuss the constraints that these upper bounds set on certain theory parameters, including the charged lepton flavor violating Higgs couplings, the corresponding parameters in the type-III 2HDM, and the new physics cut-off scales in the SMEFT, in RS models and in models with heavy neutrinos.Comment: 20 pages, 2 figures (extend the CEPC study to the FCC-ee and the ILC, and to match the published version

    Systematic Evaluation of Protein Sequence Filtering Algorithms for Proteoform Identification Using Top-Down Mass Spectrometry

    Get PDF
    Complex proteoforms contain various primary structural alterations resulting from variations in genes, RNA, and proteins. Top-down mass spectrometry is commonly used for analyzing complex proteoforms because it provides whole sequence information of the proteoforms. Proteoform identification by top-down mass spectral database search is a challenging computational problem because the types and/or locations of some alterations in target proteoforms are in general unknown. Although spectral alignment and mass graph alignment algorithms have been proposed for identifying proteoforms with unknown alterations, they are extremely slow to align millions of spectra against tens of thousands of protein sequences in high throughput proteome level analyses. Many software tools in this area combine efficient protein sequence filtering algorithms and spectral alignment algorithms to speed up database search. As a result, the performance of these tools heavily relies on the sensitivity and efficiency of their filtering algorithms. Here, we propose two efficient approximate spectrum-based filtering algorithms for proteoform identification. We evaluated the performances of the proposed algorithms and four existing ones on simulated and real top-down mass spectrometry data sets. Experiments showed that the proposed algorithms outperformed the existing ones for complex proteoform identification. In addition, combining the proposed filtering algorithms and mass graph alignment algorithms identified many proteoforms missed by ProSightPC in proteome-level proteoform analyses
    • …
    corecore