3,823 research outputs found

    Thermal fluctuation, deflection angle and greybody factor of a high-dimensional Schwarzschild black hole in STVG

    Full text link
    In this work, we study the thermal fluctuation, deflection angle and greybody factor of the high-dimensional Schwarzschild black hole in scalar-tensor-vector gravity (STVG). Based on the correction of black hole entropy due to thermal fluctuation, we calculate some thermodynamic quantities associated with the correction of black hole entropy. The influence of the first-order and second-order corrections, spacetime dimensionality and STVG parameters on these thermodynamics quantities are discussed in detail. Additionally, by utilizing the Gauss-Bonnet theorem, the deflection angle is obtained in the weak field limit and the effect of two parameters on the results is visualized. Finally, we calculate the bounds on greybody factors of a massless scalar field.Comment: 13 pages, 11 figure

    Inhibition of hepatocelluar carcinoma MAT2A and MAT2beta gene expressions by single and dual small interfering RNA

    Get PDF
    RNA interference (RNAi) has been successfully applied in suppression of hepatic cancer genes. In hepatocelluar carcinoma cell, one methionine adenosyltransferase (MAT) isozyme, MATII was found to have two catalytic subunits which were encoded by MAT2A and MAT2β respectively. During tumorigeness of hepatocelluar carcinoma, expressions of the two genes were discovered to be increased combining with a switch of MAT (form MATI to MATII), To figure out the role played by MATII in hepatic cancer, In this study, for the first time we established a dual small interfering RNA (siRNA) expression system, which could simultaneously express two different siRNA molecules specifically targeting two genes. To test the effectiveness of this system, we applied this approach to express simultaneously two different siRNA duplexes that specifically target MAT2A and MAT2β genes of hepatocelluar carcinoma respectively in HepG2 cell. Results indicated that dual siRNA could simultaneously inhibit the expression of MAT2A and MAT2β gene by 89.5% and 97.8% respectively, In addition, dual siRNA molecules were able to significantly suppress growth of hepatocelluar carcinoma cell in vitro as well as induce apoptosis which was involved in arrest cell cycle at the G1/S checkpoint and the expressions of p21, p27 and Bax

    Cortical Layer and Spectrotemporal Architecture of Epileptiform Activity in vivo in a Mouse Model of Focal Cortical Malformation

    Get PDF
    Our objective is to examine the layer and spectrotemporal architecture and laminar distribution of high-frequency oscillations (HFOs) in a neonatal freeze lesion model of focal cortical dysplasia (FCD) associated with a high prevalence of spontaneous spike-wave discharges (SWDs). Electrophysiological recording of local field potentials (LFPs) in control and freeze lesion animals were obtained with linear micro-electrode arrays to detect presence of HFOs as compared to changes in spectral power, signal coherence, and single-unit distributions during “hyper-excitable” epochs of anesthesia-induced burst-suppression (B-S). Result were compared to HFOs observed during spontaneous SWDs in animals during sleep. Micro-electrode array recordings from the malformed cortex indicated significant increases in the presence of HFOs above 100 Hz and associated increases in spectral power and altered LFP coherence of recorded signals across cortical lamina of freeze-lesioned animals with spontaneous bursts of high-frequency activity, confined predominately to granular and supragranular layers. Spike sorting of well-isolated single-units recorded from freeze-lesioned cortex indicated an increase in putative excitatory cell activity in the outer cortical layers that showed only a weak association with HFOs while deeper inhibitory units were strongly phase-locked to high-frequency ripple (HFR) oscillations (300–800 Hz). Both SWDs and B-S show increases in HFR activity that were phase-locked to the high-frequency spike pattern occurring at the trough of low frequency oscillations. The spontaneous cyclic spiking of cortical inhibitory cells appears to be the driving substrate behind the HFO patterns associated with SWDs and a hyperexcitable supragranular layer near the malformed cortex may play a key role in epileptogenesis in our model. These data, derived from a mouse model with a distinct focal cortical malformation, support recent clinical data that HFOs, particularly fast ripples, is a biomarker to help define the cortical seizure zone, and provide limited insights toward understanding cellular level changes underlying the HFOs

    Weak gravitational lensing by an ESTGB black hole in the presence of a plasma

    Full text link
    This paper is devoted to studying the weak-field gravitational lensing properties of a 4D ESTGB black hole, which is surrounded by the plasma medium. The effects of the magnetic charges and the three plasma distribution models in the deflection of light around a 4D ESTGB black hole are investigated in detail. We find that the uniform plasma leads to a larger deflection of light rays in comparison with the singular isothermal sphere (SIS), the non-singular isothermal sphere (NSIS) models. Moreover, the deflection angle increases slightly as the absolute value of the magnetic charge decreases. Finally, we analyze the total magnification of image due to weak gravitational lensing around the black hole. The result shows that the presence of a uniform plasma medium remarkably enhances the total magnification whereas the non-uniform plasma reduces the total magnification.Comment: 24 pages, 15 figure

    Sliding-Mode-Observer-Based Position Estimation for Sensorless Control of the Planar Switched Reluctance Motor

    Get PDF
    This paper proposes a position estimation method for a planar switched reluctance motor (PSRM). In the method, a second-order sliding mode observer (SMO) is used to achieve sensorless control of a PSRM for the first time. A sensorless closed-loop control strategy based on the SMO without a position sensor for the PSRM is constructed. The SMO mainly consists of a flux linkage estimation, an adaptive current estimation, an observing error calculation, and a position estimation section. An adaptive current observer is applied in the current estimation section to minimize the error between the measured and estimated currents and to increase the accuracy of the position estimation. The flux linkage is estimated by the voltage equation of the PSRM, and the estimated flux linkage is then used to estimate the phase current in the adaptive current observer. To calculate the observing error of the SMO using the measured and estimated phase currents, the observing error of the thrust force is introduced to replace the immeasurable state error of the position and speed of the mover. The sliding surface is designed based on the error of the thrust force, and stability analysis is given. Once the sliding surface is reached, the mover position is then estimated accurately. Finally, the effectiveness of the proposed method for the PSRM is verified experimentally

    Diagnostic Value of Methylated Septin9 for Colorectal Cancer Detection

    Get PDF
    BackgroundMethylated Septin9 (mSEPT9) has been suggested as a reliable biomarker in colorectal cancer (CRC) detection. We aimed to determine the diagnostic value of mSEPT9 for CRC detection in Chinese patients. In addition, we compared the diagnostic efficacy of mSEPT9 to traditional screening method [fecal occult blood test (FOBT)] and two biomarkers [carcinoembryonic antigen (CEA) and carbohydrate antigen-199 (Ca-199)].MethodsOverall 248 subjects including 123 patients with CRC and 125 controls were included. Plasma and fecal samples were collected for CEA, Ca-199, mSEPT9, and FOBT tests. Sensitivity and specificity were calculated to evaluate the diagnostic efficacy of each method; receiver operating characteristic (ROC) curve was plotted for the assessment of diagnostic accuracy, and comparisons among FOBT, mSEPT9, and the combination were assessed through area under the ROC curve (AUC).ResultsmSEPT9 achieved overall sensitivity and specificity of 61.8% [95% confidence interval (CI): 53.0–69.9%] and 89.6% (83.0–93.8%), respectively, with an AUC value of 0.757 (95% CI: 0.701–0.807), superior to FOBT [sensitivity: 61.4% (50.9–70.9%); specificity: 70.3% (59.1–79.5%); AUC: 0.658 (0.578–0.723)], CEA [sensitivity: 35.0% (27.1–43.7%); specificity: 62.6% (53.8–70.7%); AUC: 0.485 (0.411–0.559)], and Ca-199 [sensitivity: 17.9% (12.1–25.6%); specificity: 55.7% (48.9–64.1%); AUC: 0.353 (0.283–0.423)]. The combination of mSEPT9 and FOBT further improved sensitivity and AUC value of 84.1% (75.1–90.3%) and 0.807 (0.752–0.863), respectively, while specificity was declined to 62.2% (50.8–72.4%).ConclusionmSEPT9 demonstrated best diagnostic ability in CRC detection compared with FOBT, CEA, and Ca-199. The combination of mSEPT9 and FOBT further improved diagnostic sensitivity especially for early stage disease, which may provide a new approach for future CRC screening, though further investigations are warranted

    Direct radical functionalization of native sugars

    Get PDF
    Naturally occurring (native) sugars and carbohydrates contain numerous hydroxyl groups of similar reactivity1, 2. Chemists, therefore, rely typically on laborious, multi-step protecting-group strategies3 to convert these renewable feedstocks into reagents (glycosyl donors) to make glycans. The direct transformation of native sugars to complex saccharides remains a notable challenge. Here we describe a photoinduced approach to achieve site- and stereoselective chemical glycosylation from widely available native sugar building blocks, which through homolytic (one-electron) chemistry bypasses unnecessary hydroxyl group masking and manipulation. This process is reminiscent of nature in its regiocontrolled generation of a transient glycosyl donor, followed by radical-based cross-coupling with electrophiles on activation with light. Through selective anomeric functionalization of mono- and oligosaccharides, this protecting-group-free ‘cap and glycosylate’ approach offers straightforward access to a wide array of metabolically robust glycosyl compounds. Owing to its biocompatibility, the method was extended to the direct post-translational glycosylation of proteins

    The Reproducibility of Lists of Differentially Expressed Genes in Microarray Studies

    Get PDF
    Reproducibility is a fundamental requirement in scientific experiments and clinical contexts. Recent publications raise concerns about the reliability of microarray technology because of the apparent lack of agreement between lists of differentially expressed genes (DEGs). In this study we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is used as the ranking criterion, the lists become much more reproducible, especially when fewer genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected mathematical consequence of the high variability of the t-values. We recommend the use of FC ranking plus a non-stringent P cutoff as a baseline practice in order to generate more reproducible DEG lists. The FC criterion enhances reproducibility while the P criterion balances sensitivity and specificity

    Functional analysis of the GbDWARF14 gene associated with branching development in cotton

    Get PDF
    Plant architecture, including branching pattern, is an important agronomic trait of cotton crops. In recent years, strigolactones (SLs) have been considered important plant hormones that regulate branch development. In some species such as Arabidopsis, DWARF14 is an unconventional receptor that plays an important role in the SL signaling pathway. However, studies on SL receptors in cotton are still lacking. Here, we cloned and analysed the structure of the GbD14 gene in Gossypium barbadense and found that it contains the domains necessary for a SL receptor. The GbD14 gene was expressed primarily in the roots, leaves and vascular bundles, and the GbD14 protein was determined via GFP to localize to the cytoplasm and nucleus. Gene expression analysis revealed that the GbD14 gene not only responded to SL signals but also was differentially expressed between cotton plants whose types of branching differed. In particular, GbD14 was expressed mainly in the axillary buds of normal-branching cotton, while it was expressed the most in the leaves of nulliplex-branch cotton. In cotton, the GbD14 gene can be induced by SL and other plant hormones, such as indoleacetic acid, abscisic acid, and jasmonic acid. Compared with wild-type Arabidopsis, GbD14-overexpressing Arabidopsis responded more rapidly to SL signals. Moreover, we also found that GbD14 can rescue the multi-branched phenotype of Arabidopsis Atd14 mutants. Our results indicate that the function of GbD14 is similar to that of AtD14, and GbD14 may be a receptor for SL in cotton and involved in regulating branch development. This research provides a theoretical basis for a profound understanding of the molecular mechanism of branch development and ideal plant architecture for cotton breeding improvements

    Case report: Fatal infantile hypertonic myofibrillar myopathy with compound heterozygous mutations in the CRYAB gene

    Get PDF
    BackgroundFatal infantile hypertonic myofibrillar myopathy (FIHMM) is an autosomal recessive hereditary disease characterized by amyotrophy, progressive flexion contracture and ankylosis of the trunk and limb muscles, apnea and respiratory failure, and increased creatine phosphate levels. It is caused by mutations in the CRYAB gene, and only around 18 cases including genetic mutations have been reported worldwide. All patients with FIHMM develop respiratory distress, progressive stiffness of the limbs, and have a poor prognosis. However, no effective treatment for CRYAB-associated respiratory failure has been reported. Here, we report a case of FIHMM with a novel heterozygous missense mutation.Case PresentationA 2-year-old female developed scoliosis of the lumbar spine and restrictive ventilatory dysfunction in infancy. She was admitted to the hospital with labored breathing on the third day after the second injection of inactivated poliomyelitis vaccine. Acute respiratory failure, pneumothorax, and cardiac arrest arose in the patient during hospitalization, and progressive stiffness of the trunk and limb muscles appeared, accompanied by obvious abdominal distension and an increase in phosphocreatine kinase levels. Screenings for genetic metabolic diseases in the blood and urine were normal. Electromyography revealed mild myogenic damage. A muscle biopsy indicated the accumulation of desmin, α-crystallin, and myotilin in the musculus biceps brachii, and dense granules were observed in muscle fibers using electron microscopy. Mutation analysis of CRYAB revealed a novel heterozygous missense mutation in the proband, c.302A > C (p.His101Pro) and c.3G > A (p.Met1Ile), which inherited from her asymptomatic, heterozygous carrier parents, respectively. The proband was finally diagnosed as FIHMM. One month after the FIHMM diagnosis, the child died of respiratory failure.ConclusionWe report a case of FIHMM with a novel heterozygous missense mutation of CRYAB. This finding might improve our understanding of FIHMM and highlight a novel mutation in the Chinese population
    corecore